論文の概要: Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data
- arxiv url: http://arxiv.org/abs/2403.11841v1
- Date: Mon, 18 Mar 2024 14:51:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 20:00:12.501561
- Title: Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data
- Title(参考訳): オフラインデータ構築のためのメディエータを用いた悲観的因果強化学習
- Authors: Danyang Wang, Chengchun Shi, Shikai Luo, Will Wei Sun,
- Abstract要約: 我々は新しいポリシー学習アルゴリズム PESsimistic CAusal Learning (PESCAL) を提案する。
我々のキーとなる観察は、システム力学における作用の効果を媒介する補助変数を組み込むことで、Q-関数の代わりに媒介物分布関数の下位境界を学習することは十分であるということである。
提案するアルゴリズムの理論的保証とシミュレーションによる有効性の実証、および主要な配車プラットフォームからのオフラインデータセットを利用した実世界の実験を提供する。
- 参考スコア(独自算出の注目度): 17.991833729722288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world scenarios, datasets collected from randomized experiments are often constrained by size, due to limitations in time and budget. As a result, leveraging large observational datasets becomes a more attractive option for achieving high-quality policy learning. However, most existing offline reinforcement learning (RL) methods depend on two key assumptions--unconfoundedness and positivity--which frequently do not hold in observational data contexts. Recognizing these challenges, we propose a novel policy learning algorithm, PESsimistic CAusal Learning (PESCAL). We utilize the mediator variable based on front-door criterion to remove the confounding bias; additionally, we adopt the pessimistic principle to address the distributional shift between the action distributions induced by candidate policies, and the behavior policy that generates the observational data. Our key observation is that, by incorporating auxiliary variables that mediate the effect of actions on system dynamics, it is sufficient to learn a lower bound of the mediator distribution function, instead of the Q-function, to partially mitigate the issue of distributional shift. This insight significantly simplifies our algorithm, by circumventing the challenging task of sequential uncertainty quantification for the estimated Q-function. Moreover, we provide theoretical guarantees for the algorithms we propose, and demonstrate their efficacy through simulations, as well as real-world experiments utilizing offline datasets from a leading ride-hailing platform.
- Abstract(参考訳): 実世界のシナリオでは、ランダム化実験から収集されたデータセットは、時間と予算の制限のため、サイズによって制限されることが多い。
結果として、大規模な観測データセットを活用することは、高品質な政策学習を実現するためのより魅力的な選択肢となる。
しかし、既存のオフライン強化学習(RL)手法の多くは、観測データコンテキストにおいてしばしば保持されない非確立性と肯定性の2つの重要な仮定に依存している。
これらの課題を認識し,新しいポリシー学習アルゴリズム PESsimistic CAusal Learning (PESCAL) を提案する。
また, 提案手法では, 前方基準に基づくメディエータ変数を用いて, 境界バイアスを除去し, また, 候補ポリシーによって誘導される行動分布と観測データを生成する行動ポリシーの分布シフトに対処する悲観的原理を採用する。
我々のキーとなる観察は、系の力学に作用の作用を媒介する補助変数を組み込むことで、Q関数の代わりにメディエータ分布関数の下限を学習し、分散シフトの問題を部分的に緩和するのに十分であるということである。
この知見は,推定Q-関数に対する逐次不確実性定量化の課題を回避することによって,我々のアルゴリズムを著しく単純化する。
さらに,提案するアルゴリズムの理論的保証とシミュレーションによる有効性の実証,および主要な配車プラットフォームからのオフラインデータセットを利用した実環境実験も提供する。
関連論文リスト
- Stochastic Gradient Descent with Adaptive Data [4.119418481809095]
勾配降下(SGD)は、オンライン学習シナリオにおいて特に有用である強力な最適化手法である。
オペレーションリサーチにおけるポリシー最適化問題へのSGDの適用には、環境を変えてポリシー更新に使用するデータに影響を与えるという、明確な課題が伴う。
過去の決定が生成したデータに与える影響は、勾配推定におけるバイアスを導入し、iidケースに存在しないオンライン学習の不安定性の潜在的な原因を示す。
適応データによるSGDの収束速度は, 政策誘起力学の混合時間に係わる限り, 古典的イド設定とほとんど同様であることを示す。
論文 参考訳(メタデータ) (2024-10-02T02:58:32Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
統計的に同一性を持つ無線ネットワークにおける自己回帰的マルコフ過程のサンプリングとリモート推定の課題に対処する。
我々のゴールは、分散化されたスケーラブルサンプリングおよび送信ポリシーを用いて、時間平均推定誤差と/または情報の年齢を最小化することである。
論文 参考訳(メタデータ) (2024-04-04T06:24:11Z) - Offline Reinforcement Learning with On-Policy Q-Function Regularization [57.09073809901382]
ヒストリーデータセットと所望のポリシー間の分布シフトによって引き起こされる(潜在的に破滅的な)外挿誤差に対処する。
正規化により推定Q-関数を利用する2つのアルゴリズムを提案し、D4RLベンチマークに強い性能を示すことを示す。
論文 参考訳(メタデータ) (2023-07-25T21:38:08Z) - Offline Reinforcement Learning with Additional Covering Distributions [0.0]
我々は,関数近似を用いて,ログ化されたデータセット,すなわちオフラインRLから最適ポリシーを学習する。
一般のMDPに対するサンプル効率のよいオフラインRLは、部分的カバレッジデータセットと弱い実現可能な関数クラスだけで実現可能であることを示す。
論文 参考訳(メタデータ) (2023-05-22T03:31:03Z) - A Unified Framework of Policy Learning for Contextual Bandit with
Confounding Bias and Missing Observations [108.89353070722497]
本研究では,観測データを用いた最適ポリシの獲得を目的とした,オフラインのコンテキスト的帯域幅問題について検討する。
本稿では、積分方程式系の解として報酬関数を形成するCausal-Adjusted Pessimistic(CAP)ポリシー学習という新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-20T15:17:31Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Offline Reinforcement Learning with Instrumental Variables in Confounded
Markov Decision Processes [93.61202366677526]
未測定の共同設立者を対象にオフライン強化学習(RL)について検討した。
そこで本稿では, 最適クラスポリシーを見つけるための, 有限サンプルの準最適性を保証した多種多様なポリシー学習手法を提案する。
論文 参考訳(メタデータ) (2022-09-18T22:03:55Z) - Towards Robust Bisimulation Metric Learning [3.42658286826597]
ビシミュレーションメトリクスは、表現学習問題に対する一つの解決策を提供する。
非最適ポリシーへのオン・ポリティクス・バイシミュレーション・メトリクスの値関数近似境界を一般化する。
これらの問題は、制約の少ない力学モデルと、報酬信号への埋め込みノルムの不安定な依存に起因する。
論文 参考訳(メタデータ) (2021-10-27T00:32:07Z) - Non-asymptotic Confidence Intervals of Off-policy Evaluation: Primal and
Dual Bounds [21.520045697447372]
オフ・ポリティィ・アセスメント(OPE)は、以前異なるポリシーの下で収集されたオフラインデータに基づいて、所定のポリシーの期待される報酬を推定するタスクである。
本研究は,非漸近的信頼区間を無限ホリゾンオフポリシー評価で構築する問題を考える。
原始双対最適化に基づく実践的アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-03-09T22:31:20Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
重要なアプリケーションでは,効果的な推定が依然として可能であることを示す。
我々のアプローチは、定常分布と経験分布の差を補正する比率を推定することに基づいている。
結果として得られるアルゴリズム、GenDICEは単純で効果的である。
論文 参考訳(メタデータ) (2020-02-21T00:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。