論文の概要: Ytterbium nuclear-spin qubits in an optical tweezer array
- arxiv url: http://arxiv.org/abs/2112.06732v3
- Date: Wed, 3 May 2023 16:41:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-04 19:20:33.009650
- Title: Ytterbium nuclear-spin qubits in an optical tweezer array
- Title(参考訳): 光ツイーザアレイにおけるイッテルビウム原子スピン量子ビット
- Authors: Alec Jenkins, Joanna W. Lis, Aruku Senoo, William F. McGrew, Adam M.
Kaufman
- Abstract要約: 光ツイーザアレイにおける171ドルYb原子に基づく高速でスケーラブルで高忠実な量子ビットアーキテクチャの実現について報告する。
我々は、量子情報処理プラットフォームのビルディングブロックとしての利用のために、この原子のいくつかの魅力的な性質を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report on the realization of a fast, scalable, and high-fidelity qubit
architecture, based on $^{171}$Yb atoms in an optical tweezer array. We
demonstrate several attractive properties of this atom for its use as a
building block of a quantum information processing platform. Its nuclear spin
of 1/2 serves as a long-lived and coherent two-level system, while its rich,
alkaline-earth-like electronic structure allows for low-entropy preparation,
fast qubit control, and high-fidelity readout. We present a near-deterministic
loading protocol, which allows us to fill a 10$\times$10 tweezer array with
92.73(8)% efficiency and a single tweezer with 96.0(1.4)% efficiency. In the
future, this loading protocol will enable efficient and uniform loading of
target arrays with high probability, an essential step in quantum simulation
and information applications. Employing a robust optical approach, we perform
submicrosecond qubit rotations and characterize their fidelity through
randomized benchmarking, yielding 5.2(5)$\times 10^{-3}$ error per Clifford
gate. For quantum memory applications, we measure the coherence of our qubits
with $T_2^*$=3.7(4) s and $T_2$=7.9(4) s, many orders of magnitude longer than
our qubit rotation pulses. We measure spin depolarization times on the order of
tens of seconds and find that this can be increased to the 100 s scale through
the application of a several-gauss magnetic field. Finally, we use 3D
Raman-sideband cooling to bring the atoms near their motional ground state,
which will be central to future implementations of two-qubit gates that benefit
from low motional entropy.
- Abstract(参考訳): 我々は,光tweezerアレイ内の$^{171}$yb原子に基づく高速でスケーラブルで高忠実な量子ビットアーキテクチャの実現について報告する。
我々は、量子情報処理プラットフォームのビルディングブロックとしてこの原子のいくつかの魅力的な性質を実証する。
1/2の核スピンは長寿命でコヒーレントな2段階システムとして機能する一方、豊富なアルカリ土のような電子構造は低エントロピー合成、高速量子ビット制御、高精細な読み出しを可能にしている。
10$\times$10のtweezer配列を92.73(8)%効率で満たし、単一のtweezer配列を96.0(1.4)%効率で満たす、ほぼ決定論的ロードプロトコルを提案する。
将来、このローディングプロトコルは、量子シミュレーションと情報応用における重要なステップである、高い確率でターゲットアレイの効率よく均一なローディングを可能にする。
頑健な光学的アプローチを用いて、サブマイクロ秒量子ビット回転を行い、ランダム化ベンチマークによってその忠実度を特徴付け、クリフォードゲートごとに5.2(5)$\times 10^{-3}$エラーを与える。
量子メモリアプリケーションでは、量子ビットのコヒーレンスを$T_2^*$=3.7(4) sと$T_2$=7.9(4) sで測定する。
スピン脱分極時間を数秒の順序で測定し、これを数ガウスの磁場を応用して100秒スケールに拡大できることを示した。
最後に、我々は3Dラマンサイドバンド冷却を用いて原子を運動基底状態の近くに持ち込み、低運動エントロピーの恩恵を受ける2量子ゲートの将来の実装の中心となる。
関連論文リスト
- Individual solid-state nuclear spin qubits with coherence exceeding seconds [32.074397322439324]
本稿ではEr$3+の結晶に隣接する183$Wの核スピン量子ビットからなる量子情報処理のための新しいプラットフォームを提案する。
我々は、Er$3+$スピンをアンシラとして使用して、各核スピン量子ビットの量子非退化読み出しを実演する。
我々は、電子-核スピン系のラマン駆動を刺激した全マイクロ波単量子ゲートと2量子ゲートの新たなスキームを導入する。
論文 参考訳(メタデータ) (2024-10-14T12:25:39Z) - Multiplexed quantum repeaters with hot multimode alkali-noble gas memories [45.49722819849123]
我々は、原子周波数コムプロトコルに基づく希ガス核スピンのための非低温光量子メモリを提案する。
本稿では、これらの量子メモリが衛星量子通信ネットワークの速度を高める方法について論じる。
論文 参考訳(メタデータ) (2024-02-27T18:39:15Z) - Coherent Control of the Fine-Structure Qubit in a Single Alkaline-Earth
Atom [0.7033719572603241]
キュービット状態のラマンカップリングは、高速なライドバーグ媒介の2体ゲートと同等の高速な単一量子ビット回転を約束する。
我々は、キュービットの準備、読み出し、コヒーレントな制御を実証する。
我々の研究は、中性原子ベースの量子コンピューティングのための未探索の量子ビット符号化概念の扉を開く。
論文 参考訳(メタデータ) (2024-01-19T13:22:27Z) - High-rate and high-fidelity modular interconnects between neutral atom
quantum processors [0.0]
光学キャビティを用いた中性イッテルビウム原子量子ビット間の絡み合いを発生させる実験プロトコルを提案する。
ツイストリング空洞形状は、多くの誤差の原因を抑え、高い忠実度エンタングルメントの生成を可能にする。
スピン光子絡み合い速度は5×105$ s$-1$、ベルペアレートは1.0times 105$ s$-1$と推定し、平均忠実度は0.999$に近い。
論文 参考訳(メタデータ) (2024-01-08T18:26:19Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
我々は,Rydberg tweezerシステムにおける2ビットゲートの機械学習支援設計を実演する。
我々は,高忠実度CNOTゲートを実装した最適パルス列を生成する。
単一量子ビット演算の局所的な制御は、原子列上で量子計算を行うのに十分であることを示す。
論文 参考訳(メタデータ) (2023-06-14T18:24:51Z) - Laser Systems for High Fidelity Control and Entanglement of Neutral
Atomic Qubits [0.0]
我々は、スケーラブルな中性原子量子コンピューティングに適した新しいフォトニクスと電子パッケージを提案する。
スケーラブルキュービット数のための高出力1064nmシステム、高忠実度単一キュービット制御のための位相ロックシステム、高忠実度ライドバーグ演算のためのロバストキャビティロックシステム。
論文 参考訳(メタデータ) (2023-04-17T16:11:30Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
実世界の展開とスケーリングの課題に対応するために設計された量子メモリを提示する。
メモリ技術は、温かいルビジウム蒸気を記憶媒体として利用し、室温で動作する。
我々は,高忠実度検索(95%)と低演算誤差(10-2)$を,単一光子レベルの量子メモリ操作に対して160$mu s$の記憶時間で示す。
論文 参考訳(メタデータ) (2022-05-26T00:33:13Z) - Long-lived Bell states in an array of optical clock qubits [0.0]
我々は、光学的ツイーザと断熱的Rydbergドレッシングを用いた光時計遷移の絡み合わせを作成する。
ベル状態のコヒーレンスはパリティ相関による$tau_bc = 4.2(6)$ s の寿命を持つ。
このようなベル状態は、気象学的安定性と帯域幅を高めるのに有用である。
論文 参考訳(メタデータ) (2021-11-29T16:10:30Z) - Dispersive optical systems for scalable Raman driving of hyperfine
qubits [45.82374977939355]
レーザの位相変調により振幅変調を生成する新しい手法を提案する。
このアプローチは受動的に安定であり、高効率であり、高出力レーザー源と互換性がある。
我々は、この新しいアプローチを、光ツイーザーに閉じ込められた中性8,7$Rb原子量子ビットの配列を全世界で駆動することで、ベンチマークする。
論文 参考訳(メタデータ) (2021-10-27T18:00:00Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
我々は,マルチモード固体量子メモリにおいて,通信光子と集合スピン励起の絡み合いを初めて示す。
量子メモリのエンタングルメントストレージを最大47.7$mu$sまで拡張し、最大10kmの距離で分離された量子ノード間のエンタングルメントの分配を可能にした。
論文 参考訳(メタデータ) (2021-06-09T13:59:26Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
光の量子記憶は、長距離量子通信や分散量子コンピューティングのような量子技術において必須の要素である。
近年の研究では、希土類ドープナノ粒子では長い光学的およびスピンコヒーレンス寿命が観察可能であることが示されている。
我々は,Eu$3+$:Y$O$_3$ナノ粒子におけるコヒーレント光ストレージについて,SEMM(Stark Echo Modulation Memory)量子プロトコルを用いて報告する。
論文 参考訳(メタデータ) (2020-06-17T13:25:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。