Beyond Ads: Sequential Decision-Making Algorithms in Law and Public
Policy
- URL: http://arxiv.org/abs/2112.06833v3
- Date: Tue, 29 Nov 2022 08:45:50 GMT
- Title: Beyond Ads: Sequential Decision-Making Algorithms in Law and Public
Policy
- Authors: Peter Henderson, Ben Chugg, Brandon Anderson, Daniel E. Ho
- Abstract summary: We explore the promises and challenges of employing sequential decision-making algorithms in law and public policy.
Our main thesis is that law and public policy pose distinct methodological challenges that the machine learning community has not yet addressed.
We discuss a wide range of potential applications of sequential decision-making algorithms in regulation and governance.
- Score: 2.762239258559568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the promises and challenges of employing sequential
decision-making algorithms -- such as bandits, reinforcement learning, and
active learning -- in law and public policy. While such algorithms have
well-characterized performance in the private sector (e.g., online
advertising), the tendency to naively apply algorithms motivated by one domain,
often online advertisements, can be called the "advertisement fallacy." Our
main thesis is that law and public policy pose distinct methodological
challenges that the machine learning community has not yet addressed. Machine
learning will need to address these methodological problems to move "beyond
ads." Public law, for instance, can pose multiple objectives, necessitate
batched and delayed feedback, and require systems to learn rational, causal
decision-making policies, each of which presents novel questions at the
research frontier. We discuss a wide range of potential applications of
sequential decision-making algorithms in regulation and governance, including
public health, environmental protection, tax administration, occupational
safety, and benefits adjudication. We use these examples to highlight research
needed to render sequential decision making policy-compliant, adaptable, and
effective in the public sector. We also note the potential risks of such
deployments and describe how sequential decision systems can also facilitate
the discovery of harms. We hope our work inspires more investigation of
sequential decision making in law and public policy, which provide unique
challenges for machine learning researchers with potential for significant
social benefit.
Related papers
- Algorithmic Fairness: A Tolerance Perspective [31.882207568746168]
This survey delves into the existing literature on algorithmic fairness, specifically highlighting its multifaceted social consequences.
We introduce a novel taxonomy based on 'tolerance', a term we define as the degree to which variations in fairness outcomes are acceptable.
Our systematic review covers diverse industries, revealing critical insights into the balance between algorithmic decision making and social equity.
arXiv Detail & Related papers (2024-04-26T08:16:54Z) - Regulation and NLP (RegNLP): Taming Large Language Models [51.41095330188972]
We argue how NLP research can benefit from proximity to regulatory studies and adjacent fields.
We advocate for the development of a new multidisciplinary research space on regulation and NLP.
arXiv Detail & Related papers (2023-10-09T09:22:40Z) - Envisioning a Human-AI collaborative system to transform policies into
decision models [7.9231719294492065]
We explore the enormous potential of AI to assist government agencies and policy experts in scaling the production of both human-readable and machine executable policy rules.
We present an initial emerging approach to shorten the route from policy documents to executable, interpretable and standardised decision models using AI, NLP and Knowledge Graphs.
Despite the many open domain challenges, in this position paper we explore the enormous potential of AI to assist government agencies and policy experts in scaling the production of both human-readable and machine executable policy rules.
arXiv Detail & Related papers (2022-11-01T18:29:48Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
We review the concepts and notions of fairness that were put forward in the area in the recent past.
We present an overview of how research in this field is currently operationalized.
Overall, our analysis of recent works points to certain research gaps.
arXiv Detail & Related papers (2022-05-23T08:34:25Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Algorithms and Decision-Making in the Public Sector [0.6101839518775968]
Governments adopt, procure, and use algorithmic systems to support their functions within several contexts.
We explore the social implications of municipal algorithmic systems across a variety of stages.
arXiv Detail & Related papers (2021-06-07T14:53:04Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
Human-in-the-loop machine learning is widely used in artificial intelligence (AI) to elicit labels from experts.
In this work, we allow experts to additionally produce decision rules describing their decision-making.
We show that decision rule elicitation improves domain adaptation of the algorithm and helps to propagate expert's knowledge to the AI model.
arXiv Detail & Related papers (2021-02-23T08:07:22Z) - A survey of algorithmic recourse: definitions, formulations, solutions,
and prospects [24.615500469071183]
We focus on algorithmic recourse, which is concerned with providing explanations and recommendations to individuals who are unfavourably treated by automated decision-making systems.
We perform an extensive literature review, and align the efforts of many authors by presenting unified definitions, formulations, and solutions to recourse.
arXiv Detail & Related papers (2020-10-08T15:15:34Z) - Imposing Regulation on Advanced Algorithms [0.0]
The book examines universally applicable patterns in administrative decisions and judicial rulings.
It investigates the role and significance of national and indeed supranational regulatory bodies for advanced algorithms.
It considers ENISA, an EU agency that focuses on network and information security, as an interesting candidate for a European regulator of advanced algorithms.
arXiv Detail & Related papers (2020-05-16T20:26:54Z) - Public Bayesian Persuasion: Being Almost Optimal and Almost Persuasive [57.47546090379434]
We study the public persuasion problem in the general setting with: (i) arbitrary state spaces; (ii) arbitrary action spaces; (iii) arbitrary sender's utility functions.
We provide a quasi-polynomial time bi-criteria approximation algorithm for arbitrary public persuasion problems that, in specific settings, yields a QPTAS.
arXiv Detail & Related papers (2020-02-12T18:59:18Z) - Preventing Imitation Learning with Adversarial Policy Ensembles [79.81807680370677]
Imitation learning can reproduce policies by observing experts, which poses a problem regarding policy privacy.
How can we protect against external observers cloning our proprietary policies?
We introduce a new reinforcement learning framework, where we train an ensemble of near-optimal policies.
arXiv Detail & Related papers (2020-01-31T01:57:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.