論文の概要: Investigation of Quantum Support Vector Machine for Classification in
NISQ era
- arxiv url: http://arxiv.org/abs/2112.06912v1
- Date: Mon, 13 Dec 2021 18:59:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-04 16:23:00.694167
- Title: Investigation of Quantum Support Vector Machine for Classification in
NISQ era
- Title(参考訳): NISQ時代の分類のための量子支援ベクトルマシンの検討
- Authors: Anekait Kariya, Bikash K. Behera
- Abstract要約: 本稿では,量子支援ベクトルマシン(QSVM)アルゴリズムとその回路バージョンについて検討する。
量子回路におけるトレーニングおよびテストデータサンプルを符号化し,QSVM回路実装手法の効率性を計算する。
我々は、現在のNISQデバイスにQSVMアルゴリズムを適用する際に直面する技術的困難を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum machine learning is at the crossroads of two of the most exciting
current areas of research; quantum computing and classical machine learning. It
explores the interaction between quantum computing and machine learning,
investigating how results and techniques from one field can be used to solve
the problems of the other. Here, we investigate quantum support vector machine
(QSVM) algorithm and its circuit version on present quantum computers. We
propose a general encoding procedure extending QSVM algorithm, which would
allow one to feed vectors with higher dimension in the training-data oracle of
QSVM. We compute the efficiency of the QSVM circuit implementation method by
encoding training and testing data sample in quantum circuits and running them
on quantum simulator and real chip for two datasets; 6/9 and banknote. We
highlight the technical difficulties one would face while applying the QSVM
algorithm on current NISQ era devices. Then we propose a new method to classify
these datasets with enhanced efficiencies for the above datasets both on
simulator and real chips.
- Abstract(参考訳): 量子機械学習は、量子コンピューティングと古典的な機械学習という、2つの最もエキサイティングな研究領域の交差点にある。
量子コンピューティングと機械学習の相互作用を探求し、一方の分野からの結果とテクニックをどのように利用して他方の問題を解決するかを研究する。
本稿では,量子サポートベクトルマシン(qsvm)アルゴリズムとその回路バージョンについて,量子コンピュータ上で検討する。
そこで本研究では,QSVMのトレーニングデータオラクルにおいて,ベクトルを高次元で供給できるQSVMアルゴリズムを拡張した一般的な符号化手順を提案する。
本稿では,量子回路におけるデータサンプルの学習と試験を符号化し,量子シミュレータと実チップ上で実行することにより,QSVM回路の実装手法の効率性を計算する。
我々は、現在のNISQデバイスにQSVMアルゴリズムを適用する際に直面する技術的困難を強調した。
そこで本研究では,上記のデータセットをシミュレータと実チップの両方で効率良く分類する新しい手法を提案する。
関連論文リスト
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Quantum-Assisted Simulation: A Framework for Designing Machine Learning
Models in the Quantum Computing Domain [0.0]
量子コンピューティングの歴史を探求し、既存のQMLアルゴリズムを検証し、QMLアルゴリズムのシミュレーションを作成するための簡易な手順を提案する。
機械学習と量子機械学習の両方を用いて,データセット上でシミュレーションを行った。
論文 参考訳(メタデータ) (2023-11-17T07:33:42Z) - Quantum support vector machines for classification and regression on a trapped-ion quantum computer [9.736685719039599]
量子支援ベクトル分類(QSVC)と量子支援ベクトル回帰(QSVR)に基づく量子機械学習モデルについて検討する。
本稿では,これらのモデルについて,ノイズと非ノイズの双方を考慮した量子回路シミュレータとIonQ Harmony量子プロセッサを用いて検討する。
分類タスクでは, 捕捉イオン量子コンピュータの4量子ビットを用いたQSVCモデルの性能は, ノイズレス量子回路シミュレーションで得られたものと同等であった。
論文 参考訳(メタデータ) (2023-07-05T08:06:41Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Quantum Machine Learning for Software Supply Chain Attacks: How Far Can
We Go? [5.655023007686363]
本稿では、量子機械学習(QML)と呼ばれる機械学習アルゴリズムに適用されたQCの高速化性能について分析する。
実際の量子コンピュータの限界により、QML法はQiskitやIBM Quantumといったオープンソースの量子シミュレータ上で実装された。
興味深いことに、実験結果は、SSC攻撃の古典的アプローチと比較して計算時間と精度の低下を示すことによって、QCの約束を早めることと異なる。
論文 参考訳(メタデータ) (2022-04-04T21:16:06Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
グラフ編集距離(GED: Graph Edit Distance)は、2つのグラフ間の(異なる)相似性の度合いを測定する。
本稿では、GED計算における2つの量子アプローチの比較研究について述べる。
論文 参考訳(メタデータ) (2021-11-19T12:35:26Z) - Supervised Learning Using a Dressed Quantum Network with "Super
Compressed Encoding": Algorithm and Quantum-Hardware-Based Implementation [7.599675376503671]
ノイズのある中間量子(NISQ)デバイス上での変分量子機械学習(QML)アルゴリズムの実装には、必要となるキュービット数とマルチキュービットゲートに関連するノイズに関連する問題がある。
本稿では,これらの問題に対処するための量子ネットワークを用いた変分QMLアルゴリズムを提案する。
他の多くのQMLアルゴリズムとは異なり、我々の量子回路は単一量子ビットゲートのみで構成されており、ノイズに対して堅牢である。
論文 参考訳(メタデータ) (2020-07-20T16:29:32Z) - QEML (Quantum Enhanced Machine Learning): Using Quantum Computing to
Enhance ML Classifiers and Feature Spaces [0.49841205356595936]
機械学習と量子コンピューティングは、特定のアルゴリズムのパフォーマンスと振る舞いにパラダイムシフトを引き起こしている。
本稿ではまず,量子的特徴空間の実装に関する数学的直観について述べる。
従来のKNNの分類手法を模倣した雑音変動量子回路KNNを構築した。
論文 参考訳(メタデータ) (2020-02-22T04:14:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。