論文の概要: An Efficient Quantum Classifier Based on Hamiltonian Representations
- arxiv url: http://arxiv.org/abs/2504.10542v1
- Date: Sun, 13 Apr 2025 11:49:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:10:55.414027
- Title: An Efficient Quantum Classifier Based on Hamiltonian Representations
- Title(参考訳): ハミルトニアン表現に基づく効率的な量子分類器
- Authors: Federico Tiblias, Anna Schroeder, Yue Zhang, Mariami Gachechiladze, Iryna Gurevych,
- Abstract要約: 量子機械学習(QML)は、量子コンピューティングの利点をデータ駆動タスクに移行しようとする分野である。
入力をパウリ弦の有限集合にマッピングすることで、データ符号化に伴うコストを回避できる効率的な手法を提案する。
我々は、古典的および量子モデルに対して、テキストおよび画像分類タスクに対する我々のアプローチを評価する。
- 参考スコア(独自算出の注目度): 50.467930253994155
- License:
- Abstract: Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks. However, many studies rely on toy datasets or heavy feature reduction, raising concerns about their scalability. Progress is further hindered by hardware limitations and the significant costs of encoding dense vector representations on quantum devices. To address these challenges, we propose an efficient approach called Hamiltonian classifier that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings and computing predictions as their expectation values. In addition, we introduce two classifier variants with different scaling in terms of parameters and sample complexity. We evaluate our approach on text and image classification tasks, against well-established classical and quantum models. The Hamiltonian classifier delivers performance comparable to or better than these methods. Notably, our method achieves logarithmic complexity in both qubits and quantum gates, making it well-suited for large-scale, real-world applications. We make our implementation available on GitHub.
- Abstract(参考訳): 量子機械学習(QML)は、量子コンピューティングの利点をデータ駆動タスクに移行しようとする分野である。
しかし、多くの研究はおもちゃのデータセットや重い機能削減に依存しており、そのスケーラビリティに対する懸念を高めている。
進歩は、ハードウェアの制限と、量子デバイス上で密度の高いベクトル表現を符号化する大きなコストによってさらに妨げられている。
これらの課題に対処するために、入力をパウリ文字列の有限集合にマッピングし、予測値として計算予測することにより、データ符号化に関連するコストを回避する、ハミルトン分類器と呼ばれる効率的な手法を提案する。
さらに、パラメータとサンプルの複雑さの点で異なるスケーリングを持つ2つの分類器変種を導入する。
我々は、古典的および量子モデルに対して、テキストおよび画像分類タスクに対する我々のアプローチを評価する。
ハミルトニアン分類器はこれらの手法に匹敵する性能を提供する。
特に,本手法は量子ビットと量子ゲートの両方の対数複雑性を実現し,大規模な実世界の応用に適している。
実装はGitHubで公開しています。
関連論文リスト
- Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
量子ニューロモーフィックコンピューティング(QNC)は、量子計算とニューラルネットワークを融合して、量子機械学習(QML)のためのスケーラブルで耐雑音性のあるアルゴリズムを作成する
QNCの中核は量子パーセプトロン(QP)であり、相互作用する量子ビットのアナログダイナミクスを利用して普遍的な量子計算を可能にする。
論文 参考訳(メタデータ) (2024-11-13T23:56:20Z) - Empirical Power of Quantum Encoding Methods for Binary Classification [0.2118773996967412]
我々は、様々な機械学習メトリクスに対する符号化スキームとその効果に焦点を当てる。
具体的には、実世界の複数のデータセットの量子符号化戦略の違いを示すために、実世界のデータ符号化に焦点を当てる。
論文 参考訳(メタデータ) (2024-08-23T14:34:57Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Ensembles of Quantum Classifiers [0.0]
量子分類アルゴリズムの実行に有効なアプローチは、アンサンブル法の導入である。
本稿では,二項分類のための量子分類器のアンサンブルの実装と実証評価について述べる。
論文 参考訳(メタデータ) (2023-11-16T10:27:25Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
本研究では, 変分, 遺伝的および行列積状態に基づくアルゴリズムを用いて, 符号化画像データを表す量子状態の効率的な作成法を実装した。
その結果、これらの手法は、標準状態準備実装よりも2桁も浅い回路を用いて、QMLに適したレベルにほぼ準備できることが判明した。
論文 参考訳(メタデータ) (2023-09-18T01:49:36Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
我々は、様々な量子プロセッサの動作を数値的にシミュレートし、特徴付ける。
我々は,各デバイスの性能をベンチマークラインと比較することにより,量子複雑性を同定し,評価する。
我々は、回路の出力状態が平均して高い純度である限り、偏化ベースのベンチマークが成り立つことを発見した。
論文 参考訳(メタデータ) (2023-04-10T23:01:10Z) - Ensemble-learning variational shallow-circuit quantum classifiers [4.104704267247209]
本稿では,ブートストラップ集約と適応的ブースティングという,アンサンブル学習の2つの手法を提案する。
これらのプロトコルは古典的な手書き数字や対称性で保護されたトポロジカルハミルトニアンの量子位相の識別のために例示されている。
論文 参考訳(メタデータ) (2023-01-30T07:26:35Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
量子機械学習手法を用いて表情認識の可能な解を示す。
適切に定義された量子状態の振幅に符号化されたグラフの隣接行列を操作する量子回路を定義する。
論文 参考訳(メタデータ) (2021-02-09T13:48:00Z) - Supervised Learning Using a Dressed Quantum Network with "Super
Compressed Encoding": Algorithm and Quantum-Hardware-Based Implementation [7.599675376503671]
ノイズのある中間量子(NISQ)デバイス上での変分量子機械学習(QML)アルゴリズムの実装には、必要となるキュービット数とマルチキュービットゲートに関連するノイズに関連する問題がある。
本稿では,これらの問題に対処するための量子ネットワークを用いた変分QMLアルゴリズムを提案する。
他の多くのQMLアルゴリズムとは異なり、我々の量子回路は単一量子ビットゲートのみで構成されており、ノイズに対して堅牢である。
論文 参考訳(メタデータ) (2020-07-20T16:29:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。