Quantum simulation of weak-field light-matter interactions
- URL: http://arxiv.org/abs/2112.07177v2
- Date: Tue, 7 Feb 2023 20:01:08 GMT
- Title: Quantum simulation of weak-field light-matter interactions
- Authors: Steve M. Young, Hartmut H\"affner, Mohan Sarovar
- Abstract summary: Simulation of the interaction of light with matter, including at the few-photon level, is important for understanding the optical and optoelectronic properties of materials.
We develop a quantum simulation framework for simulating such light-matter interactions on platforms with controllable bosonic degrees of freedom.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation of the interaction of light with matter, including at the
few-photon level, is important for understanding the optical and optoelectronic
properties of materials, and for modeling next-generation non-linear
spectroscopies that use entangled light. At the few-photon level the quantum
properties of the electromagnetic field must be accounted for with a quantized
treatment of the field, and then such simulations quickly become intractable,
especially if the matter subsystem must be modeled with a large number of
degrees of freedom, as can be required to accurately capture many-body effects
and quantum noise sources. Motivated by this we develop a quantum simulation
framework for simulating such light-matter interactions on platforms with
controllable bosonic degrees of freedom, such as vibrational modes in the
trapped ion platform. The key innovation in our work is a scheme for simulating
interactions with a continuum field using only a few discrete bosonic modes,
which is enabled by a Green's function (response function) formalism. We
develop the simulation approach, sketch how the simulation can be performed
using trapped ions, and then illustrate the method with numerical examples. Our
work expands the reach of quantum simulation to important light-matter
interaction models and illustrates the advantages of extracting dynamical
quantities such as response functions from quantum simulations.
Related papers
- Simulating Non-Markovian Dynamics in Multidimensional Electronic Spectroscopy via Quantum Algorithm [0.0]
We present a general approach for the simulation of the optical response of multi-chromophore systems in a structured environment.
A key step of the procedure is the pseudomode embedding of the system-environment problem resulting in a finite set of quantum states evolving.
This formulation is then solved by a collision model integrated into a quantum algorithm designed to simulate linear and nonlinear response functions.
arXiv Detail & Related papers (2024-09-09T12:13:41Z) - Programmable Simulations of Molecules and Materials with Reconfigurable
Quantum Processors [0.3320294284424914]
We introduce a simulation framework for strongly correlated quantum systems that can be represented by model spin Hamiltonians.
Our approach leverages reconfigurable qubit architectures to programmably simulate real-time dynamics.
We show how this method can be used to compute key properties of a polynuclear transition-metal catalyst and 2D magnetic materials.
arXiv Detail & Related papers (2023-12-04T19:00:01Z) - Quantum Computing Simulation of a Mixed Spin-Boson Hamiltonian and Its Performance for a Cavity Quantum Electrodynamics Problem [0.0]
We present a methodology for simulating a phase transition in a pair of cavities that permit photon hopping.
We find that the simulation can be performed with a modest amount of quantum resources.
arXiv Detail & Related papers (2023-10-17T15:25:35Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Superconducting quantum many-body circuits for quantum simulation and
computing [0.0]
We discuss how superconducting circuits allow the engineering of a wide variety of interactions.
In particular we focus on strong photon-photon interactions mediated by nonlinear elements.
We discuss future perspectives of superconducting quantum simulation that open up when concatenating quantum gates in emerging quantum computing platforms.
arXiv Detail & Related papers (2020-03-18T10:33:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.