論文の概要: TASSY -- A Text Annotation Survey System
- arxiv url: http://arxiv.org/abs/2112.07391v1
- Date: Tue, 14 Dec 2021 13:32:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-15 22:16:01.567289
- Title: TASSY -- A Text Annotation Survey System
- Title(参考訳): tassy - テキストアノテーション調査システム
- Authors: Timo Spinde and Kanishka Sinha and Norman Meuschke and Bela Gipp
- Abstract要約: テキストアノテーションタスクを含むWebベースのサーベイを作成するための,無償かつオープンソースツールを提案する。
私たちのツールは、主に図書館情報科学、社会科学、人文科学の研究者のニーズに対応しています。
- 参考スコア(独自算出の注目度): 3.8596788671326947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a free and open-source tool for creating web-based surveys that
include text annotation tasks. Existing tools offer either text annotation or
survey functionality but not both. Combining the two input types is
particularly relevant for investigating a reader's perception of a text which
also depends on the reader's background, such as age, gender, and education.
Our tool caters primarily to the needs of researchers in the Library and
Information Sciences, the Social Sciences, and the Humanities who apply Content
Analysis to investigate, e.g., media bias, political communication, or fake
news.
- Abstract(参考訳): テキストアノテーションタスクを含むwebベースの調査を作成するための,無償かつオープンソースなツールを提案する。
既存のツールはテキストアノテーションやサーベイ機能を提供するが、両方ではない。
2つの入力タイプを組み合わせることは、年齢、性別、教育といった読者の背景にも依存するテキストに対する読者の認識を調べることに特に関係している。
私たちのツールは、主に図書館や情報科学、社会科学、コンテンツ分析を適用して調査する人文科学、例えば、メディアバイアス、政治コミュニケーション、フェイクニュースなどの研究者のニーズに応えるものです。
関連論文リスト
- BookWorm: A Dataset for Character Description and Analysis [59.186325346763184]
本稿では,短い事実プロファイルを生成する文字記述と,詳細な解釈を提供する文字解析という2つのタスクを定義する。
本稿では,Gutenbergプロジェクトからの書籍と,人間による記述と分析のペアリングを行うBookWormデータセットを紹介する。
その結果,検索に基づくアプローチは両タスクにおいて階層的アプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-10-14T10:55:58Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
大規模言語モデル(LLM)を用いたツール学習は,高度に複雑な問題に対処するLLMの能力を強化するための,有望なパラダイムとして登場した。
この分野での注目と急速な進歩にもかかわらず、現存する文献は断片化され、体系的な組織が欠如している。
論文 参考訳(メタデータ) (2024-05-28T08:01:26Z) - A Comprehensive Review on Sentiment Analysis: Tasks, Approaches and
Applications [0.2717221198324361]
感性分析(SA)はテキストマイニングにおける新たな分野である。
これは、異なるソーシャルメディアプラットフォーム上でテキストで表現された意見を計算的に識別し、分類するプロセスである。
論文 参考訳(メタデータ) (2023-11-19T06:29:41Z) - Summative Student Course Review Tool Based on Machine Learning Sentiment
Analysis to Enhance Life Science Feedback Efficacy [4.518390136757588]
本稿では,言語・語彙の機能として,授業に対する感情の分析を通じて,学生の意見を要約し,整理するための新しいアプローチを示す。
この分析は、コース後調査の最後に遭遇した一般的なコメントセクションに対する反応から導かれる。
論文 参考訳(メタデータ) (2023-01-15T19:56:56Z) - TRIE++: Towards End-to-End Information Extraction from Visually Rich
Documents [51.744527199305445]
本稿では,視覚的にリッチな文書からエンド・ツー・エンドの情報抽出フレームワークを提案する。
テキスト読み出しと情報抽出は、よく設計されたマルチモーダルコンテキストブロックを介して互いに強化することができる。
フレームワークはエンドツーエンドのトレーニング可能な方法でトレーニングでき、グローバルな最適化が達成できる。
論文 参考訳(メタデータ) (2022-07-14T08:52:07Z) - Latin writing styles analysis with Machine Learning: New approach to old
questions [0.0]
中世のテキストは、世代から世代までのコミュニケーション手段を用いて、心から学び、普及した。
ラテン語で書かれた文学の特定の構成を考慮に入れれば、特定の物語テキストの親しみやすい情報源の確率パターンを探索し、示すことができる。
論文 参考訳(メタデータ) (2021-09-01T20:21:45Z) - TextEssence: A Tool for Interactive Analysis of Semantic Shifts Between
Corpora [14.844685568451833]
TextEssenceは、埋め込みを用いたコーポラの比較分析を可能にするインタラクティブなシステムです。
TextEssenceには、軽量なWebベースのインターフェイスに、ビジュアル、隣り合わせ、および類似性ベースの組み込み分析モードが含まれています。
論文 参考訳(メタデータ) (2021-03-19T21:26:28Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
我々は、古典的なキーワード検索とニューラル検索を組み合わせた新しいプラットフォームであるAI Research Navigatorを導入し、関連する文献を発見し整理する。
本稿では,システム全体のアーキテクチャの概要と,文書分析,質問応答,検索,分析,専門家検索,レコメンデーションの構成要素について概説する。
論文 参考訳(メタデータ) (2020-10-30T19:12:25Z) - A Survey of Knowledge-Enhanced Text Generation [81.24633231919137]
テキスト生成の目標は、機械を人間の言語で表現できるようにすることである。
入力テキストを出力テキストにマッピングすることを学ぶことで、目的を達成するために、様々なニューラルエンコーダデコーダモデルが提案されている。
この問題に対処するために、研究者は入力テキスト以外の様々な種類の知識を生成モデルに組み込むことを検討してきた。
論文 参考訳(メタデータ) (2020-10-09T06:46:46Z) - A Comparative Study of Feature Types for Age-Based Text Classification [3.867363075280544]
年齢によるフィクションテキストの分類作業における言語的特徴の多種多様性の比較を行った。
その結果,文書レベルでテキストを記述する特徴は,機械学習モデルの品質を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-09-24T18:41:10Z) - TRIE: End-to-End Text Reading and Information Extraction for Document
Understanding [56.1416883796342]
本稿では,統合されたエンドツーエンドのテキスト読解と情報抽出ネットワークを提案する。
テキスト読解のマルチモーダル視覚的特徴とテキスト的特徴は、情報抽出のために融合される。
提案手法は, 精度と効率の両面において, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-05-27T01:47:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。