Speeding up Learning Quantum States through Group Equivariant
Convolutional Quantum Ans\"atze
- URL: http://arxiv.org/abs/2112.07611v3
- Date: Thu, 14 Sep 2023 07:16:08 GMT
- Title: Speeding up Learning Quantum States through Group Equivariant
Convolutional Quantum Ans\"atze
- Authors: Han Zheng, Zimu Li, Junyu Liu, Sergii Strelchuk, Risi Kondor
- Abstract summary: We develop a framework for convolutional quantum circuits with SU$(d)$symmetry.
We prove Harrow's statement on equivalence between $nameSU(d)$ and $S_n$ irrep bases.
- Score: 13.651587339535961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a theoretical framework for $S_n$-equivariant convolutional
quantum circuits with SU$(d)$-symmetry, building on and significantly
generalizing Jordan's Permutational Quantum Computing (PQC) formalism based on
Schur-Weyl duality connecting both SU$(d)$ and $S_n$ actions on qudits. In
particular, we utilize the Okounkov-Vershik approach to prove Harrow's
statement (Ph.D. Thesis 2005 p.160) on the equivalence between
$\operatorname{SU}(d)$ and $S_n$ irrep bases and to establish the
$S_n$-equivariant Convolutional Quantum Alternating Ans\"atze ($S_n$-CQA) using
Young-Jucys-Murphy (YJM) elements. We prove that $S_n$-CQA is able to generate
any unitary in any given $S_n$ irrep sector, which may serve as a universal
model for a wide array of quantum machine learning problems with the presence
of SU($d$) symmetry. Our method provides another way to prove the universality
of Quantum Approximate Optimization Algorithm (QAOA) and verifies that 4-local
SU($d$) symmetric unitaries are sufficient to build generic SU($d$) symmetric
quantum circuits up to relative phase factors. We present numerical simulations
to showcase the effectiveness of the ans\"atze to find the ground state energy
of the $J_1$--$J_2$ antiferromagnetic Heisenberg model on the rectangular and
Kagome lattices. Our work provides the first application of the celebrated
Okounkov-Vershik's $S_n$ representation theory to quantum physics and machine
learning, from which to propose quantum variational ans\"atze that strongly
suggests to be classically intractable tailored towards a specific optimization
problem.
Related papers
- The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
We study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote $textQMA+(2)$.
In particular, we design global protocols for small set expansion, unique games, and PCP verification.
We show that QMA(2) is equal to $textQMA+(2)$ provided the gap of the latter is a sufficiently large constant.
arXiv Detail & Related papers (2024-02-29T01:35:46Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - SU(d)-Symmetric Random Unitaries: Quantum Scrambling, Error Correction,
and Machine Learning [11.861283136635837]
We show that in the presence of SU(d) symmetry, the local conserved quantities would exhibit residual values even at $t rightarrow infty$.
We also show that SU(d)-symmetric unitaries can be used to constructally optimal codes.
We derive an overpartameterization threshold via the quantum neural kernel.
arXiv Detail & Related papers (2023-09-28T16:12:31Z) - Designs from Local Random Quantum Circuits with SU(d) Symmetry [10.563048698227115]
We construct, for the first time, explicit local unitary ensembles that can achieve high-order unitary $k$-designs under continuous symmetry.
Specifically, we define the Convolutional Quantum Alternating group (CQA) generated by 4-local SU$(d)$-symmetric Hamiltonians.
We prove that they form and converge to SU$(d)$-symmetric $k$-designs, respectively, for all $k n(n-3)/2$ with $n$ being the number of qudits.
arXiv Detail & Related papers (2023-09-15T04:41:10Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Quantum and classical spin network algorithms for $q$-deformed
Kogut-Susskind gauge theories [0.0]
We introduce $q$-deformed Kogut-Susskind lattice gauge theories, obtained by deforming the defining symmetry algebra to a quantum group.
Our proposal simultaneously provides a controlled regularization of the infinite-dimensional local Hilbert space while preserving essential symmetry-related properties.
Our work gives a new perspective for the application of tensor network methods to high-energy physics.
arXiv Detail & Related papers (2023-04-05T15:49:20Z) - Shape Invariant Potentials in Supersymmetric Quantum Cosmology [0.0]
shape invariant potentials is an essential feature in many settings of $N=2$ supersymmetric quantum mechanics.
We show how shape in property can be employed to bring a relation among several factor orderings choices for our Schr"odinger-Wheeler-DeWitt equation.
arXiv Detail & Related papers (2022-05-31T19:51:21Z) - Phenomenological Theory of Variational Quantum Ground-State Preparation [0.0]
The variational quantum eigensolver (VQE) algorithm aims to prepare the ground state of a Hamiltonian exploiting parametrized quantum circuits.
We show that the algorithm's success crucially depends on other parameters such as the learning rate.
We propose a symmetry-enhanced simulation protocol that should be used if the gap closes.
arXiv Detail & Related papers (2022-05-12T18:00:04Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.