Shape Invariant Potentials in Supersymmetric Quantum Cosmology
- URL: http://arxiv.org/abs/2206.00083v1
- Date: Tue, 31 May 2022 19:51:21 GMT
- Title: Shape Invariant Potentials in Supersymmetric Quantum Cosmology
- Authors: S. Jalalzadeh, S. M. M. Rasouli and P. V. Moniz
- Abstract summary: shape invariant potentials is an essential feature in many settings of $N=2$ supersymmetric quantum mechanics.
We show how shape in property can be employed to bring a relation among several factor orderings choices for our Schr"odinger-Wheeler-DeWitt equation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this brief review, we comment on the concept of shape invariant
potentials, which is an essential feature in many settings of $N=2$
supersymmetric quantum mechanics. To motivate its application within
supersymmetric quantum cosmology, we present a case study to illustrate the
value of this promising tool. Concretely, we take a spatially flat FRW model in
the presence of a single scalar field, minimally coupled to gravity. Then, we
extract the associated Schr\"odinger-Wheeler-DeWitt equation, allowing for a
particular scope of factor ordering. Subsequently, we compute the corresponding
supersymmetric partner Hamiltonians, $H_1$ and $H_2$. Moreover, we point out
how the shape invariance property can be employed to bring a relation among
several factor orderings choices for our Schr\"odinger-Wheeler-DeWitt equation.
The ground state is retrieved, and the excited states easily written. Finally,
the Hamiltonians, $H_1$ and $H_2$ are explicitly presented within a $N=2$
supersymmetric quantum mechanics framework.
Related papers
- Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - \boldmath $SU(\infty)$ Quantum Gravity: Emergence of Gravity in an Infinitely Divisible Quantum Universe [0.0]
$SU(infty)$-QGR is a foundationally quantum approach to gravity.
It assumes that the Hilbert space of the Universe as a whole represents the symmetry group $SU(infty)$.
We show that the global $SU(infty)$ symmetry manifests itself through the entanglement of subsystems with the rest of the Universe.
arXiv Detail & Related papers (2023-01-07T09:19:15Z) - Speeding up Learning Quantum States through Group Equivariant
Convolutional Quantum Ans\"atze [13.651587339535961]
We develop a framework for convolutional quantum circuits with SU$(d)$symmetry.
We prove Harrow's statement on equivalence between $nameSU(d)$ and $S_n$ irrep bases.
arXiv Detail & Related papers (2021-12-14T18:03:43Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z) - Symmetry from Entanglement Suppression [0.0]
We show that a minimally entangling $S$-matrix would give rise to global symmetries.
For $N_q$ species of qubit, the Identity gate is associated with an $[SU(2)]N_q$ symmetry.
arXiv Detail & Related papers (2021-04-22T02:50:10Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - Reduced Phase Space Approach to the $U(1)^3$ model for Euclidean Quantum
Gravity [0.0]
A consistent model captures significant structure of the Ashtekar-Barbero $SU(2)$ gauge theory of Euclidean gravity.
A non trivial realisation of the hypersurface deformation algebra makes it an interesting testing ground for quantum gravity.
arXiv Detail & Related papers (2020-10-30T16:16:14Z) - Hamiltonian operator approximation for energy measurement and ground
state preparation [23.87373187143897]
We show how to approximate the Hamiltonian operator as a sum of propagators using a differential representation.
The proposed approach, named Hamiltonian operator approximation (HOA), is designed to benefit analog quantum simulators.
arXiv Detail & Related papers (2020-09-07T18:11:00Z) - Emergent $\mathcal{PT}$ symmetry in a double-quantum-dot circuit QED
set-up [0.0]
We show that a non-Hermitian Hamiltonian emerges naturally in a double-quantum-dot-circuit-QED set-up.
Our results pave the way for an on-chip realization of a potentially scalable non-Hermitian system.
arXiv Detail & Related papers (2020-04-16T09:08:31Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.