論文の概要: A Simple But Powerful Graph Encoder for Temporal Knowledge Graph
Completion
- arxiv url: http://arxiv.org/abs/2112.07791v1
- Date: Tue, 14 Dec 2021 23:30:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-16 13:36:02.544487
- Title: A Simple But Powerful Graph Encoder for Temporal Knowledge Graph
Completion
- Title(参考訳): 時間知識グラフ補完のための単純かつ強力なグラフエンコーダ
- Authors: Zifeng Ding, Yunpu Ma, Bailan He, Volker Tresp
- Abstract要約: 時間知識グラフ(TKG)のための単純だが強力なグラフエンコーダTARGCNを提案する。
我々のモデルは,最先端モデルと比較して,GDELTデータセットに対して42%以上の相対的な改善を達成できる。
ICEWS05-15データセットでは18.5%のパラメータで最強のベースラインを上回っている。
- 参考スコア(独自算出の注目度): 13.047205680129094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While knowledge graphs contain rich semantic knowledge of various entities
and the relational information among them, temporal knowledge graphs (TKGs)
further indicate the interactions of the entities over time. To study how to
better model TKGs, automatic temporal knowledge graph completion (TKGC) has
gained great interest. Recent TKGC methods aim to integrate advanced deep
learning techniques, e.g., attention mechanism and Transformer, to boost model
performance. However, we find that compared to adopting various kinds of
complex modules, it is more beneficial to better utilize the whole amount of
temporal information along the time axis. In this paper, we propose a simple
but powerful graph encoder TARGCN for TKGC. TARGCN is parameter-efficient, and
it extensively utilizes the information from the whole temporal context. We
perform experiments on three benchmark datasets. Our model can achieve a more
than 42% relative improvement on GDELT dataset compared with the
state-of-the-art model. Meanwhile, it outperforms the strongest baseline on
ICEWS05-15 dataset with around 18.5% fewer parameters.
- Abstract(参考訳): 知識グラフは様々な実体の豊富な意味的知識とそれらの間の関係情報を含んでいるが、時間的知識グラフ(TKG)は時間とともに実体の相互作用を示す。
TKGのモデリング方法を改善するために,自動時間知識グラフ補完(TKGC)が注目されている。
近年のTKGC手法は,アテンション機構やトランスフォーマーといった高度な深層学習技術を統合し,モデル性能の向上を目指している。
しかし,多種多様な複雑なモジュールを採用することに比べ,時間軸に沿った時間情報全体の活用がより有益であることがわかった。
本稿では,TKGCのための単純だが強力なグラフエンコーダTARGCNを提案する。
TARGCNはパラメータ効率が高く、時間的コンテキスト全体からの情報を広範囲に活用する。
3つのベンチマークデータセットで実験を行う。
我々のモデルは,最先端モデルと比較して,GDELTデータセットに対して42%以上の相対的な改善を達成できる。
一方、ICEWS05-15データセットでは18.5%のパラメータで最強のベースラインを上回っている。
関連論文リスト
- KERMIT: Knowledge Graph Completion of Enhanced Relation Modeling with Inverse Transformation [19.31783654838732]
大規模言語モデルを用いてコヒーレントな記述を生成し,クエリと回答のセマンティックなギャップを埋める。
また、逆関係を利用して対称グラフを作成し、KGCのための強化トレーニングサンプルを提供する。
提案手法は,WN18RRではHit@1が4.2%,FB15k-237ではHit@3が3.4%向上し,優れた性能を示した。
論文 参考訳(メタデータ) (2023-09-26T09:03:25Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - Temporal Graph Benchmark for Machine Learning on Temporal Graphs [54.52243310226456]
テンポラルグラフベンチマーク(TGB)は、困難で多様なベンチマークデータセットのコレクションである。
各データセットをベンチマークし、共通のモデルのパフォーマンスがデータセット間で大きく異なることを発見した。
TGBは、再現可能でアクセス可能な時間グラフ研究のための自動機械学習パイプラインを提供する。
論文 参考訳(メタデータ) (2023-07-03T13:58:20Z) - Deep Temporal Graph Clustering [77.02070768950145]
深部時間グラフクラスタリング(GC)のための汎用フレームワークを提案する。
GCは、時間グラフの相互作用シーケンスに基づくバッチ処理パターンに適合するディープクラスタリング技術を導入している。
我々のフレームワークは、既存の時間グラフ学習手法の性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2023-05-18T06:17:50Z) - A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
and Multimodal [57.8455911689554]
知識グラフ推論(KGR)は、知識グラフに基づくマイニング論理則に基づいて、既存の事実から新しい事実を推論することを目的としている。
質問応答やレコメンデーションシステムなど、多くのAIアプリケーションでKGを使うことに大きなメリットがあることが証明されている。
論文 参考訳(メタデータ) (2022-12-12T08:40:04Z) - Few-Shot Inductive Learning on Temporal Knowledge Graphs using
Concept-Aware Information [31.10140298420744]
時間的知識グラフ(TKG)のための数発のアウト・オブ・グラフ(OOG)リンク予測タスクを提案する。
メタラーニングフレームワークを用いて、未知のエンティティに関するリンクから、欠落したエンティティを予測する。
我々のモデルは3つのデータセットすべてにおいて優れた性能を達成する。
論文 参考訳(メタデータ) (2022-11-15T14:23:07Z) - A Simple Temporal Information Matching Mechanism for Entity Alignment
Between Temporal Knowledge Graphs [18.451872649228196]
本稿では,時間的情報マッチング機構を組み合わせた単純なグラフニューラルネットワーク(GNN)モデルを提案する。
また、TKGの時間情報を用いて、教師なしアライメント種子を生成する方法を提案する。
論文 参考訳(メタデータ) (2022-09-20T12:27:34Z) - Learning Meta Representations of One-shot Relations for Temporal
Knowledge Graph Link Prediction [33.36701435886095]
近年,静的知識グラフ(KG)のリレーショナル学習が注目されている。
TKGには豊富な時間情報が含まれており、モデリングには時間的推論技術が必要である。
これは、時間的文脈で少数のショットの関係を学ぶ上で大きな課題となる。
論文 参考訳(メタデータ) (2022-05-21T15:17:52Z) - Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic
Representations [1.8262547855491458]
低ランクテンソル分解モデル LowFER のパラメータ効率および時間認識拡張系である Time-LowFER を導入する。
時間を表現するための現在のアプローチのいくつかの制限に留意し、時間特徴に対するサイクル対応の時間符号化方式を提案する。
我々は,時間に敏感なデータ処理に着目した統合時間知識グラフ埋め込みフレームワークに本手法を実装した。
論文 参考訳(メタデータ) (2022-04-10T22:24:11Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
本稿では,新たなノードやエッジを自動的に拡張して,高密度サブグラフ内のラベル類似性を向上する,新しい前処理手法であるElectoral College(ELCO)を提案する。
テストされたすべての設定において、我々の手法はベースモデルの平均スコアを4.7ポイントの広いマージンで引き上げるとともに、常に最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2020-06-10T14:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。