論文の概要: Exploring the Asynchronous of the Frequency Spectra of GAN-generated
Facial Images
- arxiv url: http://arxiv.org/abs/2112.08050v1
- Date: Wed, 15 Dec 2021 11:34:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-16 17:29:14.797515
- Title: Exploring the Asynchronous of the Frequency Spectra of GAN-generated
Facial Images
- Title(参考訳): GAN生成顔画像の周波数スペクトルの非同期性を探る
- Authors: Binh M. Le and Simon S. Woo
- Abstract要約: カラーチャネルの非同期周波数スペクトルを探索する新しい手法を提案する。これは、教師なし学習モデルと教師なし学習モデルの両方を訓練し、GANに基づく合成画像の識別に有効である。
実験結果から,周波数領域におけるスペクトルの差は,様々な種類のGAN生成画像の検出に有効であることが示唆された。
- 参考スコア(独自算出の注目度): 19.126496628073376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progression of Generative Adversarial Networks (GANs) has raised a
concern of their misuse for malicious purposes, especially in creating fake
face images. Although many proposed methods succeed in detecting GAN-based
synthetic images, they are still limited by the need for large quantities of
the training fake image dataset and challenges for the detector's
generalizability to unknown facial images. In this paper, we propose a new
approach that explores the asynchronous frequency spectra of color channels,
which is simple but effective for training both unsupervised and supervised
learning models to distinguish GAN-based synthetic images. We further
investigate the transferability of a training model that learns from our
suggested features in one source domain and validates on another target domains
with prior knowledge of the features' distribution. Our experimental results
show that the discrepancy of spectra in the frequency domain is a practical
artifact to effectively detect various types of GAN-based generated images.
- Abstract(参考訳): generative adversarial networks (gans) の急速な進歩は、悪意のある目的、特に偽の顔画像の作成において、その誤用を懸念させている。
提案手法の多くはganベースの合成画像の検出に成功しているが、偽画像データセットの大量のトレーニングの必要性と、未知の顔画像に対する検出器の一般化の課題によって、依然として制限されている。
本稿では,ganベース合成画像の識別のために教師なし学習モデルと教師なし学習モデルの両方を訓練するのに有効であるカラーチャネルの非同期周波数スペクトルを探索する新しい手法を提案する。
提案する1つのソースドメインの機能から学習し、その特徴の分布を事前に知る他のターゲットドメインで検証するトレーニングモデルの転送可能性についても検討する。
実験の結果,周波数領域におけるスペクトルの相違は,様々な種類のGAN生成画像の検出に有効であることがわかった。
関連論文リスト
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Spectrum Translation for Refinement of Image Generation (STIG) Based on
Contrastive Learning and Spectral Filter Profile [15.5188527312094]
生成した画像の周波数領域における相違を緩和する枠組みを提案する。
これは、コントラスト学習に基づく画像生成(STIG)の洗練のためのスペクトル変換によって実現される。
我々は,STIGの有効性を実証するために,8つのフェイク画像データセットと様々な最先端モデルにまたがるフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-03-08T06:39:24Z) - Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
我々は、アップサンプリング操作から生じる一般化された構造的アーティファクトをキャプチャし、特徴付ける手段として、NPR(Neighboring Pixel Relationships)の概念を紹介した。
tft28の異なる生成モデルによって生成されたサンプルを含む、オープンワールドデータセット上で包括的な分析を行う。
この分析は、新しい最先端のパフォーマンスを確立し、既存の手法よりも優れたtft11.6%の向上を示している。
論文 参考訳(メタデータ) (2023-12-16T14:27:06Z) - Intriguing properties of synthetic images: from generative adversarial
networks to diffusion models [19.448196464632]
実際の画像と偽画像を区別する上で,どの画像の特徴がより優れているかを知ることが重要である。
本稿では, 実画像と生成画像の最も法学的に関係した特徴を発見することを目的とした, 異なる家系の多数の画像生成装置の系統的研究について報告する。
論文 参考訳(メタデータ) (2023-04-13T11:13:19Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - Detecting High-Quality GAN-Generated Face Images using Neural Networks [23.388645531702597]
本稿では,スペクトル帯域差を利用したGAN生成画像と実画像との区別手法を提案する。
特に,クロスバンド共起行列と空間共起行列を用いて,顔画像のデジタル保存を可能にする。
性能向上は特に重要であり、異なる後処理環境において92%以上を達成することを示す。
論文 参考訳(メタデータ) (2022-03-03T13:53:27Z) - Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in
Frequency Domain [88.7339322596758]
本論文では,空間画像と位相スペクトルを組み合わせ,顔の偽造のアップサンプリング成果をキャプチャするSPSL(Spatial-Phase Shallow Learning)法を提案する。
SPSLは、クロスデータセット評価における最先端性能とマルチクラス分類を実現し、単一データセット評価において同等の結果を得ることができる。
論文 参考訳(メタデータ) (2021-03-02T16:45:08Z) - CNN Detection of GAN-Generated Face Images based on Cross-Band
Co-occurrences Analysis [34.41021278275805]
最終世代のGANモデルでは、自然と視覚的に区別できない合成画像を生成することができる。
本稿では、スペクトル帯域間の不整合を利用して、自然画像とGAN生成物を区別する手法を提案する。
論文 参考訳(メタデータ) (2020-07-25T10:55:04Z) - Generative Hierarchical Features from Synthesizing Images [65.66756821069124]
画像合成の学習は、広範囲のアプリケーションにまたがって一般化可能な顕著な階層的な視覚的特徴をもたらす可能性があることを示す。
生成的階層的特徴(Generative Hierarchical Feature, GH-Feat)と呼ばれるエンコーダが生成する視覚的特徴は、生成的タスクと識別的タスクの両方に強い伝達性を有する。
論文 参考訳(メタデータ) (2020-07-20T18:04:14Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。