Fixed Random Classifier Rearrangement for Continual Learning
- URL: http://arxiv.org/abs/2402.15227v1
- Date: Fri, 23 Feb 2024 09:43:58 GMT
- Title: Fixed Random Classifier Rearrangement for Continual Learning
- Authors: Shengyang Huang and Jianwen Mo
- Abstract summary: In visual classification scenario, neural networks inevitably forget the knowledge of old tasks after learning new ones.
We propose a continual learning algorithm named Fixed Random Rearrangement (FRCR)
- Score: 0.5439020425819
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the explosive growth of data, continual learning capability is
increasingly important for neural networks. Due to catastrophic forgetting,
neural networks inevitably forget the knowledge of old tasks after learning new
ones. In visual classification scenario, a common practice of alleviating the
forgetting is to constrain the backbone. However, the impact of classifiers is
underestimated. In this paper, we analyze the variation of model predictions in
sequential binary classification tasks and find that the norm of the equivalent
one-class classifiers significantly affects the forgetting level. Based on this
conclusion, we propose a two-stage continual learning algorithm named Fixed
Random Classifier Rearrangement (FRCR). In first stage, FRCR replaces the
learnable classifiers with fixed random classifiers, constraining the norm of
the equivalent one-class classifiers without affecting the performance of the
network. In second stage, FRCR rearranges the entries of new classifiers to
implicitly reduce the drift of old latent representations. The experimental
results on multiple datasets show that FRCR significantly mitigates the model
forgetting; subsequent experimental analyses further validate the effectiveness
of the algorithm.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Decoupled Training for Long-Tailed Classification With Stochastic
Representations [15.990318581975435]
Decoupling representation learning and learning has been shown to be effective in classification with long-tailed data.
We first apply Weight Averaging (SWA), an optimization technique for improving generalization of deep neural networks, to obtain better generalizing feature extractors for long-tailed classification.
We then propose a novel classifier re-training algorithm based on perturbed representation obtained from the SWA-Gaussian, a Gaussian SWA, and a self-distillation strategy.
arXiv Detail & Related papers (2023-04-19T05:35:09Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Informative regularization for a multi-layer perceptron RR Lyrae
classifier under data shift [3.303002683812084]
We propose a scalable and easily adaptable approach based on an informative regularization and an ad-hoc training procedure to mitigate the shift problem.
Our method provides a new path to incorporate knowledge from characteristic features into artificial neural networks to manage the underlying data shift problem.
arXiv Detail & Related papers (2023-03-12T02:49:19Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - The Impact of Using Regression Models to Build Defect Classifiers [13.840006058766766]
It is common practice to discretize continuous defect counts into defective and non-defective classes.
We compare the performance and interpretation of defect classifiers built using both approaches.
arXiv Detail & Related papers (2022-02-12T22:12:55Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
We consider perturbations bounded by the $ell$--norm, which have been shown as effective attacks in the domains of image-recognition, natural language processing, and malware-detection.
We propose a novel defense method that consists of "truncation" and "adrial training"
Motivated by the insights we obtain, we extend these components to neural network classifiers.
arXiv Detail & Related papers (2022-01-23T21:18:17Z) - Robust Neural Network Classification via Double Regularization [2.41710192205034]
We propose a novel double regularization of the neural network training loss that combines a penalty on the complexity of the classification model and an optimal reweighting of training observations.
We demonstrate DRFit, for neural net classification of (i) MNIST and (ii) CIFAR-10, in both cases with simulated mislabeling.
arXiv Detail & Related papers (2021-12-15T13:19:20Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Learning Adaptive Embedding Considering Incremental Class [55.21855842960139]
Class-Incremental Learning (CIL) aims to train a reliable model with the streaming data, which emerges unknown classes sequentially.
Different from traditional closed set learning, CIL has two main challenges: 1) Novel class detection.
After the novel classes are detected, the model needs to be updated without re-training using entire previous data.
arXiv Detail & Related papers (2020-08-31T04:11:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.