Graph Convolutional Networks with Dual Message Passing for Subgraph
Isomorphism Counting and Matching
- URL: http://arxiv.org/abs/2112.08764v1
- Date: Thu, 16 Dec 2021 10:23:48 GMT
- Title: Graph Convolutional Networks with Dual Message Passing for Subgraph
Isomorphism Counting and Matching
- Authors: Xin Liu, Yangqiu Song
- Abstract summary: Graph neural networks (GNNs) and message passing neural networks (MPNNs) have been proven to be expressive for subgraph structures.
We propose dual message passing neural networks (DMPNNs) to enhance the substructure representation learning.
- Score: 42.55928561326902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) and message passing neural networks (MPNNs) have
been proven to be expressive for subgraph structures in many applications. Some
applications in heterogeneous graphs require explicit edge modeling, such as
subgraph isomorphism counting and matching. However, existing message passing
mechanisms are not designed well in theory. In this paper, we start from a
particular edge-to-vertex transform and exploit the isomorphism property in the
edge-to-vertex dual graphs. We prove that searching isomorphisms on the
original graph is equivalent to searching on its dual graph. Based on this
observation, we propose dual message passing neural networks (DMPNNs) to
enhance the substructure representation learning in an asynchronous way for
subgraph isomorphism counting and matching as well as unsupervised node
classification. Extensive experiments demonstrate the robust performance of
DMPNNs by combining both node and edge representation learning in synthetic and
real heterogeneous graphs. Code is available at
https://github.com/HKUST-KnowComp/DualMessagePassing.
Related papers
- A Flexible, Equivariant Framework for Subgraph GNNs via Graph Products and Graph Coarsening [18.688057947275112]
Subgraph Graph Neural Networks (Subgraph GNNs) enhance the expressivity of message-passing GNNs by representing graphs as sets of subgraphs.
Previous approaches suggested processing only subsets of subgraphs, selected either randomly or via learnable sampling.
This paper introduces a new Subgraph GNNs framework to address these issues.
arXiv Detail & Related papers (2024-06-13T16:29:06Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node
Classification [6.977634174845066]
A universal feature encoder for both graph and hypergraph representation learning is designed, called UniG-Encoder.
The architecture starts with a forward transformation of the topological relationships of connected nodes into edge or hyperedge features.
The encoded node embeddings are then derived from the reversed transformation, described by the transpose of the projection matrix.
arXiv Detail & Related papers (2023-08-03T09:32:50Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Learning to Count Isomorphisms with Graph Neural Networks [16.455234748896157]
Subgraph isomorphism counting is an important problem on graphs.
In this paper, we propose a novel graph neural network (GNN) called Count-GNN for subgraph isomorphism counting.
arXiv Detail & Related papers (2023-02-07T05:32:11Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
"Graph Substructure Networks" (GSN) is a topologically-aware message passing scheme based on substructure encoding.
We show that it is strictly more expressive than the Weisfeiler-Leman (WL) graph isomorphism test.
We perform an extensive evaluation on graph classification and regression tasks and obtain state-of-the-art results in diverse real-world settings.
arXiv Detail & Related papers (2020-06-16T15:30:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.