BayesFlow can reliably detect Model Misspecification and Posterior
Errors in Amortized Bayesian Inference
- URL: http://arxiv.org/abs/2112.08866v1
- Date: Thu, 16 Dec 2021 13:25:27 GMT
- Title: BayesFlow can reliably detect Model Misspecification and Posterior
Errors in Amortized Bayesian Inference
- Authors: Marvin Schmitt and Paul-Christian B\"urkner and Ullrich K\"othe and
Stefan T. Radev
- Abstract summary: We conceptualize the types of model misspecification arising in simulation-based inference and systematically investigate the performance of the BayesFlow framework under these misspecifications.
We propose an augmented optimization objective which imposes a probabilistic structure on the latent data space and utilize maximum mean discrepancy (MMD) to detect potentially catastrophic misspecifications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural density estimators have proven remarkably powerful in performing
efficient simulation-based Bayesian inference in various research domains. In
particular, the BayesFlow framework uses a two-step approach to enable
amortized parameter estimation in settings where the likelihood function is
implicitly defined by a simulation program. But how faithful is such inference
when simulations are poor representations of reality? In this paper, we
conceptualize the types of model misspecification arising in simulation-based
inference and systematically investigate the performance of the BayesFlow
framework under these misspecifications. We propose an augmented optimization
objective which imposes a probabilistic structure on the latent data space and
utilize maximum mean discrepancy (MMD) to detect potentially catastrophic
misspecifications during inference undermining the validity of the obtained
results. We verify our detection criterion on a number of artificial and
realistic misspecifications, ranging from toy conjugate models to complex
models of decision making and disease outbreak dynamics applied to real data.
Further, we show that posterior inference errors increase as a function of the
distance between the true data-generating distribution and the typical set of
simulations in the latent summary space. Thus, we demonstrate the dual utility
of MMD as a method for detecting model misspecification and as a proxy for
verifying the faithfulness of amortized Bayesian inference.
Related papers
- Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
This paper presents a novel framework for estimating the joint PMF and automatically inferring its rank from observed data.
We derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Additionally, we develop a scalable version of the VI-based approach by leveraging variational inference (SVI)
Experiments involving both synthetic data and real movie recommendation data illustrate the advantages of our VI and SVI-based methods in terms of estimation accuracy, automatic rank detection, and computational efficiency.
arXiv Detail & Related papers (2024-10-08T20:07:49Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
We show how diffusion-based models can be repurposed for performing principled, identifiable Bayesian inference.
We show how such maps can be learned via standard DBM training using a novel noise schedule.
The result is a class of highly expressive generative models, uniquely defined on a low-dimensional latent space.
arXiv Detail & Related papers (2024-07-11T19:58:19Z) - Addressing Misspecification in Simulation-based Inference through Data-driven Calibration [43.811367860375825]
Recent work has demonstrated that model misspecification can harm simulation-based inference's reliability.
This work introduces robust posterior estimation (ROPE), a framework that overcomes model misspecification with a small real-world calibration set of ground truth parameter measurements.
arXiv Detail & Related papers (2024-05-14T16:04:39Z) - All-in-one simulation-based inference [19.41881319338419]
We present a new amortized inference method -- the Simformer -- which overcomes current limitations.
The Simformer outperforms current state-of-the-art amortized inference approaches on benchmark tasks.
It can be applied to models with function-valued parameters, it can handle inference scenarios with missing or unstructured data, and it can sample arbitrary conditionals of the joint distribution of parameters and data.
arXiv Detail & Related papers (2024-04-15T10:12:33Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Robust Bayesian Inference for Discrete Outcomes with the Total Variation
Distance [5.139874302398955]
Models of discrete-valued outcomes are easily misspecified if the data exhibit zero-inflation, overdispersion or contamination.
Here, we introduce a robust discrepancy-based Bayesian approach using the Total Variation Distance (TVD)
We empirically demonstrate that our approach is robust and significantly improves predictive performance on a range of simulated and real world data.
arXiv Detail & Related papers (2020-10-26T09:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.