論文の概要: Harnessing spatial homogeneity of neuroimaging data: patch individual
filter layers for CNNs
- arxiv url: http://arxiv.org/abs/2007.11899v1
- Date: Thu, 23 Jul 2020 10:11:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 12:21:42.194443
- Title: Harnessing spatial homogeneity of neuroimaging data: patch individual
filter layers for CNNs
- Title(参考訳): 神経画像データの空間的均質性を利用したcnn用個別フィルタ層の検討
- Authors: Fabian Eitel, Jan Philipp Albrecht, Martin Weygandt, Friedemann Paul,
Kerstin Ritter
- Abstract要約: ニューラルネットワークにおける階層的抽象化の考え方と、ニューロイメージングデータの空間的均一性に先立って、新しいCNNアーキテクチャを提案する。
重みを共有せずに個々の画像領域(パッチ)でフィルタを学習することにより、PIF層は抽象的特徴をより早く、より少ないサンプルで学習することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuroimaging data, e.g. obtained from magnetic resonance imaging (MRI), is
comparably homogeneous due to (1) the uniform structure of the brain and (2)
additional efforts to spatially normalize the data to a standard template using
linear and non-linear transformations. Convolutional neural networks (CNNs), in
contrast, have been specifically designed for highly heterogeneous data, such
as natural images, by sliding convolutional filters over different positions in
an image. Here, we suggest a new CNN architecture that combines the idea of
hierarchical abstraction in neural networks with a prior on the spatial
homogeneity of neuroimaging data: Whereas early layers are trained globally
using standard convolutional layers, we introduce for higher, more abstract
layers patch individual filters (PIF). By learning filters in individual image
regions (patches) without sharing weights, PIF layers can learn abstract
features faster and with fewer samples. We thoroughly evaluated PIF layers for
three different tasks and data sets, namely sex classification on UK Biobank
data, Alzheimer's disease detection on ADNI data and multiple sclerosis
detection on private hospital data. We demonstrate that CNNs using PIF layers
result in higher accuracies, especially in low sample size settings, and need
fewer training epochs for convergence. To the best of our knowledge, this is
the first study which introduces a prior on brain MRI for CNN learning.
- Abstract(参考訳): 磁気共鳴画像(MRI)から得られる神経画像データは、(1)脳の均一な構造と(2)リニアおよび非線形変換を用いた標準テンプレートへの空間的正規化のための追加の取り組みにより、可逆的に均一である。
対照的に畳み込みニューラルネットワーク(CNN)は、画像内の異なる位置に畳み込みフィルタをスライドさせることにより、自然画像のような非常に異質なデータのために特別に設計されている。
本稿では、ニューラルネットワークにおける階層的抽象化の考え方と、ニューロイメージングデータの空間的均一性に関する先行概念を組み合わせた、新しいCNNアーキテクチャを提案する。
重みを共有せずに個々の画像領域(パッチ)でフィルタを学習することにより、PIF層は抽象的特徴をより早く、より少ないサンプルで学習することができる。
本研究は,英国バイオバンクデータによる性分類,ADNIデータによるアルツハイマー病検出,民間病院データによる多発性硬化症検出の3つの課題とデータセットについて,PIF層を徹底的に評価した。
PIF層を用いたCNNは,特に低サンプルサイズ設定において高い精度を示し,収束のためのトレーニングエポックスを少なくすることを示した。
私たちの知る限りでは、これはcnnの学習に先立って脳mriを導入する最初の研究です。
関連論文リスト
- Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset [11.173478552040441]
アルツハイマー病(Alzheimer's Disease, AD)は、脳の局所的および広範な神経変性を誘導する疾患である。
本研究では、下流ADとCN分類のための特徴抽出器を訓練するための教師なし手法をいくつか評価した。
論文 参考訳(メタデータ) (2024-06-20T11:26:32Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Classification of diffraction patterns using a convolutional neural
network in single particle imaging experiments performed at X-ray
free-electron lasers [53.65540150901678]
X線自由電子レーザー(XFEL)における単一粒子イメージング(SPI)は、その自然環境における粒子の3次元構造を決定するのに特に適している。
再建を成功させるためには、単一のヒットに由来する回折パターンを多数の取得パターンから分離する必要がある。
本稿では,この課題を画像分類問題として定式化し,畳み込みニューラルネットワーク(CNN)アーキテクチャを用いて解決することを提案する。
論文 参考訳(メタデータ) (2021-12-16T17:03:14Z) - Data Augmentation and CNN Classification For Automatic COVID-19
Diagnosis From CT-Scan Images On Small Dataset [0.0]
肺CT画像からのCOVID1-19自動診断フレームワークを提案する。
本論文では,複数のHounsfield Unit(HU)正規化ウィンドウを用いた一意かつ効果的なデータ拡張手法を提案する。
トレーニング・検証データセットでは,患者の分類精度は93.39%である。
論文 参考訳(メタデータ) (2021-08-16T15:23:00Z) - Combining 3D Image and Tabular Data via the Dynamic Affine Feature Map
Transform [3.5235974685889397]
我々は,CNNの汎用モジュールであるDynamic Affine Feature Map Transform (DAFT)を紹介し,患者の臨床情報に基づいて,畳み込み層の特徴マップを動的に再スケール・シフトする。
DAFTは診断のための3次元画像と表型情報を組み合わせるのに非常に有効であり、それぞれ平均平衡精度0.622と平均c-インデックス0.748で競合するCNNを上回ります。
論文 参考訳(メタデータ) (2021-07-13T11:18:22Z) - Examining and Mitigating Kernel Saturation in Convolutional Neural
Networks using Negative Images [0.8594140167290097]
CNNにおける畳み込みカーネル飽和の影響を解析する。
トレーニングデータセットに負の画像を追加することで、飽和を緩和し、分類精度を高めるための単純なデータ増強技術を提案する。
以上の結果から,CNNは畳み込みカーネル飽和の影響を受けやすく,トレーニングデータセットに負のイメージを補うことで,分類精度が統計的に顕著に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2021-05-10T06:06:49Z) - MARL: Multimodal Attentional Representation Learning for Disease
Prediction [0.0]
既存の学習モデルは、しばしばCTスキャン画像を利用して肺疾患を予測する。
これらのモデルは、肺のセグメンテーションと視覚特徴学習に影響を与える高い不確実性によって構成される。
MARL(Multimodal Attentional Representation Learning Model Architecture)を紹介する。
論文 参考訳(メタデータ) (2021-05-01T17:47:40Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
ニューラルネットワークのアンサンブルを用いて生体医用画像の分類を行う。
ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign。
論文 参考訳(メタデータ) (2020-11-24T01:53:39Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z) - Neural Cellular Automata Manifold [84.08170531451006]
ニューラルセルラーオートマタのニューラルネットワークアーキテクチャは、より大きなNNにカプセル化可能であることを示す。
これにより、NAAの多様体を符号化する新しいモデルを提案し、それぞれが異なる画像を生成することができる。
生物学的には、我々のアプローチは転写因子の役割を担い、細胞の分化を促進する特定のタンパク質への遺伝子マッピングを調節する。
論文 参考訳(メタデータ) (2020-06-22T11:41:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。