論文の概要: A Deep-Learning Framework for Improving COVID-19 CT Image Quality and
Diagnostic Accuracy
- arxiv url: http://arxiv.org/abs/2112.09216v1
- Date: Thu, 16 Dec 2021 21:49:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-20 15:53:21.949884
- Title: A Deep-Learning Framework for Improving COVID-19 CT Image Quality and
Diagnostic Accuracy
- Title(参考訳): 画像品質と診断精度向上のための深層学習フレームワーク
- Authors: Garvit Goel, Jingyuan Qi, Wu-chun Feng, Guohua Cao
- Abstract要約: COVID-19の高速・高精度CT(DL-FACT)テストのためのディープラーニングベースのフレームワーク。
DL-FACTは、ターンアラウンド時間を数日から数分に短縮し、新型コロナウイルスの検査精度を91%向上させる。
- 参考スコア(独自算出の注目度): 2.2997492209809964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a deep-learning based computing framework for fast-and-accurate CT
(DL-FACT) testing of COVID-19. Our CT-based DL framework was developed to
improve the testing speed and accuracy of COVID-19 (plus its variants) via a
DL-based approach for CT image enhancement and classification. The image
enhancement network is adapted from DDnet, short for DenseNet and Deconvolution
based network. To demonstrate its speed and accuracy, we evaluated DL-FACT
across several sources of COVID-19 CT images. Our results show that DL-FACT can
significantly shorten the turnaround time from days to minutes and improve the
COVID-19 testing accuracy up to 91%. DL-FACT could be used as a software tool
for medical professionals in diagnosing and monitoring COVID-19.
- Abstract(参考訳): 本稿では,covid-19の迅速かつ正確なct(dl-fact)検査のためのディープラーニングベースのコンピューティングフレームワークを提案する。
我々は,CT画像の強調と分類のためのDLベースのアプローチにより,新型コロナウイルスの検査速度と精度を向上するために,CTベースのDLフレームワークを開発した。
画像強調ネットワークは、DenseNetとDeconvolutionベースのネットワークの略であるDDnetから適応されている。
その速度と精度を実証するため,いくつかの画像ソースでDL-FACTを評価した。
以上の結果から, DL-FACTはターンアラウンド時間を数日から数分に短縮し, 検査精度を91%向上できることがわかった。
DL-FACTは、新型コロナウイルスの診断とモニタリングを行う医療専門家のためのソフトウェアツールとして使用できる。
関連論文リスト
- Multi-Feature Vision Transformer via Self-Supervised Representation
Learning for Improvement of COVID-19 Diagnosis [2.3513645401551333]
CXR画像からのCOVID-19感染症の診断における自己教師型学習の有効性について検討した。
我々は、元のCXR画像とそれに対応する拡張されたローカル位相CXR画像から情報を学ぶために、クロスアテンション機構をデプロイする。
局所位相に基づく拡張CXR画像を活用することで,ベースライン型自己教師学習モデルの性能をさらに向上できることを示す。
論文 参考訳(メタデータ) (2022-08-03T05:02:47Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - Few-shot Learning for CT Scan based COVID-19 Diagnosis [33.26861533338019]
コロナウイルス感染症2019(英語: Coronavirus disease 2019, COVID-19)は、188か国と領土で4000万人以上の人々が感染している国際保健緊急事態宣言である。
深層学習アプローチは、医療画像の自動スクリーニングの有効なツールとなり、また、新型コロナウイルスの診断としても検討されている。
そこで本研究では,少量のラベル付きCTスキャンが利用可能である場合にのみ有効に機能する領域適応型COVID-19 CT診断法を提案する。
論文 参考訳(メタデータ) (2021-02-01T02:37:49Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
胸部CT画像からのCOVID-19検出のための深部ニューラルネットワークであるCOVID-Net CT-2を導入する。
説明力を活用して、COVID-Net CT-2の意思決定行動を調査します。
結果は有望であり、コンピュータ支援型COVID-19アセスメントの有効なツールとして、ディープニューラルネットワークの強い可能性を示唆している。
論文 参考訳(メタデータ) (2021-01-19T03:04:09Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - Chest X-ray Image Phase Features for Improved Diagnosis of COVID-19
Using Convolutional Neural Network [2.752817022620644]
最近の研究で、新型コロナウイルス患者のX線写真には、新型コロナウイルスに関する情報が含まれていることが示されている。
胸部X線(CXR)は、高速な撮像時間、広範囲の可用性、低コスト、可搬性から注目されている。
本研究では、CXR画像から新型コロナウイルスの分類を改善するために、新しい多機能畳み込みニューラルネットワーク(CNN)アーキテクチャを設計する。
論文 参考訳(メタデータ) (2020-11-06T20:26:26Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Momentum Contrastive Learning for Few-Shot COVID-19 Diagnosis from Chest
CT Images [41.73507451077361]
本稿では,新型コロナウイルスの自動診断のための新しい深層学習アルゴリズムを提案する。
コントラスト学習を用いてエンコーダを訓練し,大規模かつ一般公開された肺データセット上の表現的特徴表現をキャプチャする。
以上の結果より,胸部CT画像による新型コロナウイルスの正確な診断におけるモデルの有用性が示唆された。
論文 参考訳(メタデータ) (2020-06-16T10:14:58Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
胸部CT画像に基づくCOVID-19分類のための適応的特徴選択ガイド付き深層林(AFS-DF)を提案する。
AFS-DF on COVID-19 data with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)。
論文 参考訳(メタデータ) (2020-05-07T06:00:02Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
新型コロナウイルス感染症(COVID-19)は世界中で急速に広がり、公衆衛生や経済に大きな影響を及ぼしている。
新型コロナウイルスによる肺感染症を効果的に定量化する研究はいまだにない。
複数の新型コロナウイルス感染症領域の自動セグメンテーションのための新しいディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-12T16:24:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。