論文の概要: Optimal discharge of patients from intensive care via a data-driven
policy learning framework
- arxiv url: http://arxiv.org/abs/2112.09315v1
- Date: Fri, 17 Dec 2021 04:39:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-21 02:12:38.837015
- Title: Optimal discharge of patients from intensive care via a data-driven
policy learning framework
- Title(参考訳): データ駆動型政策学習フレームワークによる集中治療患者の最適退院
- Authors: Fernando Lejarza, Jacob Calvert, Misty M Attwood, Daniel Evans,
Qingqing Mao
- Abstract要約: 退院課題は、退院期間の短縮と退院決定後の退院や死亡のリスクとの不確実なトレードオフに対処することが重要である。
本研究は、このトレードオフを捉えるためのエンドツーエンドの汎用フレームワークを導入し、最適放電タイミング決定を推奨する。
データ駆動型アプローチは、患者の生理的状態を捉えた同種で離散的な状態空間表現を導出するために用いられる。
- 参考スコア(独自算出の注目度): 58.720142291102135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinical decision support tools rooted in machine learning and optimization
can provide significant value to healthcare providers, including through better
management of intensive care units. In particular, it is important that the
patient discharge task addresses the nuanced trade-off between decreasing a
patient's length of stay (and associated hospitalization costs) and the risk of
readmission or even death following the discharge decision. This work
introduces an end-to-end general framework for capturing this trade-off to
recommend optimal discharge timing decisions given a patient's electronic
health records. A data-driven approach is used to derive a parsimonious,
discrete state space representation that captures a patient's physiological
condition. Based on this model and a given cost function, an infinite-horizon
discounted Markov decision process is formulated and solved numerically to
compute an optimal discharge policy, whose value is assessed using off-policy
evaluation strategies. Extensive numerical experiments are performed to
validate the proposed framework using real-life intensive care unit patient
data.
- Abstract(参考訳): 機械学習と最適化に根ざした臨床意思決定支援ツールは、集中治療ユニットの管理の改善を含む、医療提供者に大きな価値を提供する。
特に、患者退院作業は、患者の滞在期間(および関連する入院費)の短縮と、退院決定後の退院または死亡のリスクとの微妙なトレードオフに対処することが重要である。
本研究は、患者の電子健康記録から最適な退院時期決定を推奨するために、このトレードオフを捉えるためのエンドツーエンドの汎用フレームワークを導入する。
データ駆動型アプローチは、患者の生理的状態を捉えた同種で離散的な状態空間表現を導出するために用いられる。
このモデルと所定のコスト関数に基づいて無限ホライゾン割引マルコフ決定過程を定式化し、数値解き、オフポリシー評価戦略を用いて価値を評価する最適な排出政策を算出する。
実生活集中治療ユニット患者データを用いて,提案フレームワークを検証するために,広範な数値実験を行った。
関連論文リスト
- A System for Critical Facility and Resource Optimization in Disaster Management and Planning [1.1039307771106914]
災害時の医療インフラの破壊は、慢性腎臓病や末期腎疾患の重篤な患者に重大なリスクをもたらす。
本研究は, 救急医療システムのレジリエンスを高めるため, 患者再配置のための最適化モデルと, 仮設医療施設の戦略的配置を提案する。
論文 参考訳(メタデータ) (2024-10-03T19:57:06Z) - Optimal Hospital Capacity Management During Demand Surges [0.13635858675752993]
本研究では,サージイベント中の病院システム内のキャパシティ管理決定を最適化するためのデータ駆動型フレームワークを提案する。
2つの重要な決定は、戦術的な計画の観点で最適化されている。
この手法は、新型コロナウイルスのパンデミックの最盛期に病院システムで振り返って評価され、推奨された決定の潜在的影響を示す。
論文 参考訳(メタデータ) (2024-03-23T06:06:06Z) - Safe and Interpretable Estimation of Optimal Treatment Regimes [54.257304443780434]
我々は、最適な治療体制を特定するための安全かつ解釈可能な枠組みを運用する。
本研究は患者の医療歴と薬理学的特徴に基づくパーソナライズされた治療戦略を支援する。
論文 参考訳(メタデータ) (2023-10-23T19:59:10Z) - Learning Optimal Treatment Strategies for Sepsis Using Offline
Reinforcement Learning in Continuous Space [4.031538204818658]
本稿では,臨床医がリアルタイム治療に最適な基準選択を推奨するのに役立つ,歴史的データに基づく新しい医療決定モデルを提案する。
本モデルでは, オフライン強化学習と深層強化学習を組み合わせることで, 医療における従来の強化学習が環境と相互作用できない問題に対処する。
論文 参考訳(メタデータ) (2022-06-22T16:17:21Z) - Adaptive Semi-Supervised Inference for Optimal Treatment Decisions with
Electronic Medical Record Data [18.77246683875067]
最適な治療体制は、最も全体的な臨床効果が期待されるものとなり、多くの注目を集めている。
半教師付き環境下での電子カルテデータによる最適治療体制の推定について検討する。
論文 参考訳(メタデータ) (2022-03-04T13:54:35Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
新型コロナウイルス(covid-19)パンデミックのような危機は、医療機関にとって深刻な課題となる。
BaBSim.Hospitalは離散イベントシミュレーションに基づく容量計画ツールである。
BaBSim.Hospitalを改善するためにこれらのパラメータを調査し最適化することを目指しています。
論文 参考訳(メタデータ) (2021-05-16T12:38:35Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
本研究の目的は, 介入を最適化する強化学習(RL)が, 学習方針の治験に対する規制に適合する経路を遡及的に得る枠組みを確立することである。
我々は,死の主な原因の一つであり,複雑で不透明な患者動態のため治療が困難である集中治療室の感染症に焦点を当てた。
論文 参考訳(メタデータ) (2020-03-13T20:31:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。