論文の概要: A Hybrid Data-Driven Approach For Analyzing And Predicting Inpatient Length Of Stay In Health Centre
- arxiv url: http://arxiv.org/abs/2501.18535v1
- Date: Thu, 30 Jan 2025 18:01:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:12:39.520169
- Title: A Hybrid Data-Driven Approach For Analyzing And Predicting Inpatient Length Of Stay In Health Centre
- Title(参考訳): 健康センターにおける入院期間の分析と予測のためのハイブリッドデータ駆動型アプローチ
- Authors: Tasfia Noor Chowdhury, Sanjida Afrin Mou, Kazi Naimur Rahman,
- Abstract要約: 本研究は,患者フローの最適化のためのオール・エンコンパス・フレームワークを提案する。
我々は、230万件の未確認患者記録の包括的なデータセットを用いて、人口統計、診断、治療、サービス、費用、料金を分析した。
本モデルでは,患者の入院時間(LoS)を教師付き学習アルゴリズムを用いて予測する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Patient length of stay (LoS) is a critical metric for evaluating the efficacy of hospital management. The primary objectives encompass to improve efficiency and reduce costs while enhancing patient outcomes and hospital capacity within the patient journey. By seamlessly merging data-driven techniques with simulation methodologies, the study proposes an all-encompassing framework for the optimization of patient flow. Using a comprehensive dataset of 2.3 million de-identified patient records, we analyzed demographics, diagnoses, treatments, services, costs, and charges with machine learning models (Decision Tree, Logistic Regression, Random Forest, Adaboost, LightGBM) and Python tools (Spark, AWS clusters, dimensionality reduction). Our model predicts patient length of stay (LoS) upon admission using supervised learning algorithms. This hybrid approach enables the identification of key factors influencing LoS, offering a robust framework for hospitals to streamline patient flow and resource utilization. The research focuses on patient flow, corroborating the efficacy of the approach, illustrating decreased patient length of stay within a real healthcare environment. The findings underscore the potential of hybrid data-driven models in transforming hospital management practices. This innovative methodology provides generally flexible decision-making, training, and patient flow enhancement; such a system could have huge implications for healthcare administration and overall satisfaction with healthcare.
- Abstract(参考訳): 入院期間(LoS)は,病院管理の有効性を評価する上で重要な指標である。
主な目的は、効率の向上とコスト削減であり、患者旅行における患者の成果と病院の能力を高めることである。
シミュレーション手法とデータ駆動手法をシームレスに融合することにより,患者フローの最適化のためのオールコンパスフレームワークを提案する。
人口統計、診断、治療、サービス、コスト、課金の総合データセットを使用して、マシンラーニングモデル(決定木、ロジスティック回帰、ランダムフォレスト、Adaboost、LightGBM)とPythonツール(Spark、AWSクラスタ、次元削減)を分析しました。
本モデルでは,患者の入院時間(LoS)を教師付き学習アルゴリズムを用いて予測する。
このハイブリッドアプローチは、LoSに影響を与える重要な要因を識別し、病院が患者フローとリソース利用を合理化するための堅牢な枠組みを提供する。
この研究は、患者フローに焦点を当て、アプローチの有効性を裏付け、実際の医療環境内に滞在する患者の長さを減少させる。
この結果から,病院経営の変革におけるハイブリッドデータ駆動モデルの可能性が示唆された。
この革新的な手法は、一般的に柔軟な意思決定、トレーニング、患者フローの強化を提供する。
関連論文リスト
- Advancing clinical trial outcomes using deep learning and predictive modelling: bridging precision medicine and patient-centered care [0.0]
深層学習と予測モデリングは、臨床試験設計、患者採用、リアルタイムモニタリングを最適化するための変換ツールとして登場した。
本研究では、畳み込みニューラルネットワーク(CNN)やトランスフォーマーモデルなどの深層学習技術の患者層化への応用について検討する。
生存分析や時系列予測を含む予測モデリング手法は、試行結果の予測、効率の向上、試行失敗率の低減に用いられている。
論文 参考訳(メタデータ) (2024-12-09T23:20:08Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z) - Policy Optimization for Personalized Interventions in Behavioral Health [8.10897203067601]
デジタルプラットフォームを通じて提供される行動的健康介入は、健康結果を大幅に改善する可能性がある。
患者に対するパーソナライズされた介入を最適化して長期的効果を最大化する問題について検討した。
患者システムの状態空間を個別のレベルに分解するDecompPIをダブする新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-21T21:42:03Z) - Modelling Patient Trajectories Using Multimodal Information [0.0]
本稿では,異なる種類の情報を組み合わせて臨床データの時間的側面を考慮した患者軌跡のモデル化手法を提案する。
本手法は, 予期せぬ患者寛解と疾患進行の2つの異なる臨床結果に基づいて検討した。
論文 参考訳(メタデータ) (2022-09-09T10:20:54Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
退院課題は、退院期間の短縮と退院決定後の退院や死亡のリスクとの不確実なトレードオフに対処することが重要である。
本研究は、このトレードオフを捉えるためのエンドツーエンドの汎用フレームワークを導入し、最適放電タイミング決定を推奨する。
データ駆動型アプローチは、患者の生理的状態を捉えた同種で離散的な状態空間表現を導出するために用いられる。
論文 参考訳(メタデータ) (2021-12-17T04:39:33Z) - IT ambidexterity driven patient agility and hospital patient service
performance: a variance approach [0.0]
本稿では,病院部門が企業の新たなIT資源と実践を同時に探求する能力をどのように活用できるかを検討する。
研究モデルを開発し、オランダの90の臨床病院の横断的なデータを用いてテストする。
研究結果は、理論化されたモデルを支持し、臨床実践を変革し、患者の機敏性を促進する方法に光を当てる。
論文 参考訳(メタデータ) (2021-07-20T11:23:22Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。