論文の概要: Full Transformer Framework for Robust Point Cloud Registration with Deep
Information Interaction
- arxiv url: http://arxiv.org/abs/2112.09385v1
- Date: Fri, 17 Dec 2021 08:40:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-20 14:08:55.402533
- Title: Full Transformer Framework for Robust Point Cloud Registration with Deep
Information Interaction
- Title(参考訳): 深い情報インタラクションを伴うロバストポイントクラウド登録のためのフルトランスフォーマフレームワーク
- Authors: Guangyan Chen, Meiling Wang, Yufeng Yue, Qingxiang Zhang, Li Yuan
- Abstract要約: 最近のTransformerベースの手法は、ポイントクラウドの登録において高度なパフォーマンスを実現している。
近年のCNNは、現地の受容によるグローバルな関係のモデル化に失敗している。
トランスフォーマーの幅の浅いアーキテクチャと位置エンコーディングの欠如は、不明瞭な特徴抽出につながる。
- 参考スコア(独自算出の注目度): 9.431484068349903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent Transformer-based methods have achieved advanced performance in point
cloud registration by utilizing advantages of the Transformer in
order-invariance and modeling dependency to aggregate information. However,
they still suffer from indistinct feature extraction, sensitivity to noise, and
outliers. The reasons are: (1) the adoption of CNNs fails to model global
relations due to their local receptive fields, resulting in extracted features
susceptible to noise; (2) the shallow-wide architecture of Transformers and
lack of positional encoding lead to indistinct feature extraction due to
inefficient information interaction; (3) the omission of geometrical
compatibility leads to inaccurate classification between inliers and outliers.
To address above limitations, a novel full Transformer network for point cloud
registration is proposed, named the Deep Interaction Transformer (DIT), which
incorporates: (1) a Point Cloud Structure Extractor (PSE) to model global
relations and retrieve structural information with Transformer encoders; (2) a
deep-narrow Point Feature Transformer (PFT) to facilitate deep information
interaction across two point clouds with positional encoding, such that
Transformers can establish comprehensive associations and directly learn
relative position between points; (3) a Geometric Matching-based Correspondence
Confidence Evaluation (GMCCE) method to measure spatial consistency and
estimate inlier confidence by designing the triangulated descriptor. Extensive
experiments on clean, noisy, partially overlapping point cloud registration
demonstrate that our method outperforms state-of-the-art methods.
- Abstract(参考訳): 近年のTransformerベースの手法は,情報集約のための順序不変性およびモデリング依存性におけるTransformerの利点を利用して,ポイントクラウド登録における高度な性能を実現している。
しかし、不明瞭な特徴抽出、ノイズに対する感受性、異常値に苦しむ。
理由は,(1)cnnの採用が局所受容場によるグローバルリレーションのモデル化に失敗すること,(2)トランスフォーマーの浅く広いアーキテクチャと位置符号化の欠如は,情報の非効率な相互作用による不明瞭な特徴抽出につながること,(3)幾何学的適合性の欠落は,不正確な不確実性と外れ値の分類につながること,である。
To address above limitations, a novel full Transformer network for point cloud registration is proposed, named the Deep Interaction Transformer (DIT), which incorporates: (1) a Point Cloud Structure Extractor (PSE) to model global relations and retrieve structural information with Transformer encoders; (2) a deep-narrow Point Feature Transformer (PFT) to facilitate deep information interaction across two point clouds with positional encoding, such that Transformers can establish comprehensive associations and directly learn relative position between points; (3) a Geometric Matching-based Correspondence Confidence Evaluation (GMCCE) method to measure spatial consistency and estimate inlier confidence by designing the triangulated descriptor.
クリーンでノイズの多い,部分的に重複するクラウドの登録実験は,我々の手法が最先端の手法より優れていることを示す。
関連論文リスト
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - TransPose: 6D Object Pose Estimation with Geometry-Aware Transformer [16.674933679692728]
TransPoseは、Transformerをジオメトリ対応モジュールで活用して、ポイントクラウドの特徴表現の学習を改善する、新しい6Dポーズフレームワークである。
TransPoseは3つのベンチマークデータセットで競合する結果を達成する。
論文 参考訳(メタデータ) (2023-10-25T01:24:12Z) - Fourier Test-time Adaptation with Multi-level Consistency for Robust
Classification [10.291631977766672]
本稿では,Fourier Test-Time Adaptation (FTTA) と呼ばれる新しい手法を提案する。
FTTAは、予測の自己監督を行うために、ペア入力の信頼性の高い多レベル整合性測定を構築する。
異なる形態と器官を持つ3つの大きな分類データセットで広範囲に検証された。
論文 参考訳(メタデータ) (2023-06-05T02:29:38Z) - RegFormer: An Efficient Projection-Aware Transformer Network for
Large-Scale Point Cloud Registration [73.69415797389195]
本稿では,大規模クラウドアライメントのためのエンドツーエンドトランス (RegFormer) ネットワークを提案する。
具体的には、プロジェクション対応階層変換器を提案し、長距離依存を捕捉し、外乱をフィルタする。
我々の変圧器は線形複雑であり、大規模シーンでも高い効率が保証される。
論文 参考訳(メタデータ) (2023-03-22T08:47:37Z) - AdaPoinTr: Diverse Point Cloud Completion with Adaptive Geometry-Aware
Transformers [94.11915008006483]
本稿では,ポイントクラウドの完了をセット・ツー・セットの翻訳問題として再定義する手法を提案する。
我々は、ポイントクラウド補完のためにTransformerエンコーダデコーダアーキテクチャを採用したPoinTrと呼ばれる新しいモデルを設計する。
本手法は,PCNで6.53 CD,ShapeNet-55で0.81 CD,現実世界のKITTIで0.392 MMDを実現する。
論文 参考訳(メタデータ) (2023-01-11T16:14:12Z) - Defect Transformer: An Efficient Hybrid Transformer Architecture for
Surface Defect Detection [2.0999222360659604]
表面欠陥検出のための効率的なハイブリッドトランスアーキテクチャであるDefect Transformer (DefT)を提案する。
DefTはCNNとTransformerを統一モデルに組み込んで、局所的および非局所的関係を協調的にキャプチャする。
3つのデータセットの実験は、他のCNNやトランスフォーマーベースのネットワークと比較して、我々の手法の優位性と効率性を実証している。
論文 参考訳(メタデータ) (2022-07-17T23:37:48Z) - 3DCTN: 3D Convolution-Transformer Network for Point Cloud Classification [23.0009969537045]
本稿では,ポイントクラウド分類のためのTransformerとの畳み込みを取り入れた,新しい階層型フレームワークを提案する。
本手法は精度と効率の両面で最先端の分類性能を実現する。
論文 参考訳(メタデータ) (2022-03-02T02:42:14Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers [81.71904691925428]
本稿では,ポイントクラウドの完了をセット・ツー・セットの翻訳問題として再定義する手法を提案する。
我々はまた、ポイントクラウド補完のためにトランスフォーマーエンコーダデコーダアーキテクチャを採用するPoinTrと呼ばれる新しいモデルも設計している。
提案手法は,新しいベンチマークと既存ベンチマークの両方において,最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T17:58:56Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
点雲は非秩序であり、その密度は著しく一様ではないため、点雲の3次元運動の推定は困難である。
本稿では,sparse convolution-transformer network (sctn) という新しいアーキテクチャを提案する。
学習した関係に基づく文脈情報が豊富で,対応点の一致に役立ち,シーンフローの推定に有効であることを示す。
論文 参考訳(メタデータ) (2021-05-10T15:16:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。