論文の概要: Fully-Geometric Cross-Attention for Point Cloud Registration
- arxiv url: http://arxiv.org/abs/2502.08285v1
- Date: Wed, 12 Feb 2025 10:44:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:48:10.361739
- Title: Fully-Geometric Cross-Attention for Point Cloud Registration
- Title(参考訳): ポイントクラウド登録のための全幾何学的クロスアテンション
- Authors: Weijie Wang, Guofeng Mei, Jian Zhang, Nicu Sebe, Bruno Lepri, Fabio Poiesi,
- Abstract要約: ポイントクラウド登録のアプローチは、ノイズのあるポイント対応のため、ポイントクラウド間の重なりが低いときに失敗することが多い。
この問題に対処するTransformerベースのアーキテクチャに適した,新たなクロスアテンション機構を導入する。
我々はGromov-Wasserstein距離をクロスアテンションの定式化に統合し、異なる点雲間の点間距離を共同計算する。
点レベルでは,局所的な幾何学的構造情報を細かなマッチングのための点特徴に集約する自己認識機構も考案する。
- 参考スコア(独自算出の注目度): 51.865371511201765
- License:
- Abstract: Point cloud registration approaches often fail when the overlap between point clouds is low due to noisy point correspondences. This work introduces a novel cross-attention mechanism tailored for Transformer-based architectures that tackles this problem, by fusing information from coordinates and features at the super-point level between point clouds. This formulation has remained unexplored primarily because it must guarantee rotation and translation invariance since point clouds reside in different and independent reference frames. We integrate the Gromov-Wasserstein distance into the cross-attention formulation to jointly compute distances between points across different point clouds and account for their geometric structure. By doing so, points from two distinct point clouds can attend to each other under arbitrary rigid transformations. At the point level, we also devise a self-attention mechanism that aggregates the local geometric structure information into point features for fine matching. Our formulation boosts the number of inlier correspondences, thereby yielding more precise registration results compared to state-of-the-art approaches. We have conducted an extensive evaluation on 3DMatch, 3DLoMatch, KITTI, and 3DCSR datasets.
- Abstract(参考訳): ポイントクラウド登録のアプローチは、ノイズのあるポイント対応のため、ポイントクラウド間の重なりが低いときに失敗することが多い。
本研究は, 点雲間の超点レベルの座標や特徴から情報を融合することにより, この問題に対処するトランスフォーマーアーキテクチャに適した新しいクロスアテンション機構を導入する。
この定式化は、主に、点雲が異なる独立した参照フレームに存在するため、回転と翻訳の不変性を保証する必要があるため、未発見のままである。
我々はグロモフ・ワッサーシュタイン距離を交叉アテンションの定式化に統合し、異なる点雲間の点間距離を共同計算し、それらの幾何学的構造を説明する。
そうすることで、2つの異なる点からの点が任意の厳密な変換の下で互いに共役することができる。
点レベルでは,局所的な幾何学的構造情報を細かなマッチングのための点特徴に集約する自己認識機構も考案する。
我々の定式化は、不整合対応の数を増やし、その結果、最先端のアプローチと比較してより正確な登録結果が得られる。
我々は3DMatch, 3DLoMatch, KITTI, 3DCSRデータセットについて広範な評価を行った。
関連論文リスト
- BiEquiFormer: Bi-Equivariant Representations for Global Point Cloud Registration [28.75341781515012]
本研究の目的は,グローバルポイントクラウド登録(PCR)の問題,すなわち,ポイントクラウド間の最適なアライメントを見つけることにある。
本研究では,現在最先端のディープラーニング手法が,任意の点の雲を空間に配置した場合に,大きな性能劣化に悩まされていることを示す。
論文 参考訳(メタデータ) (2024-07-11T17:58:10Z) - Unleash the Potential of 3D Point Cloud Modeling with A Calibrated Local
Geometry-driven Distance Metric [62.365983810610985]
そこで我々は,Callibated Local Geometry Distance (CLGD) と呼ばれる新しい距離測定法を提案する。
CLGDは、基準点の集合によってキャリブレーションされ誘導される基礎となる3次元表面の差を計算する。
一般的な指標として、CLGDは3Dポイントのクラウドモデリングを前進させる可能性がある。
論文 参考訳(メタデータ) (2023-06-01T11:16:20Z) - Point Cloud Classification Using Content-based Transformer via
Clustering in Feature Space [25.57569871876213]
本稿では,PointConTと呼ばれるポイントコンテントベースのトランスフォーマーアーキテクチャを提案する。
特徴空間内の点(コンテンツベース)の局所性を利用して、類似した特徴を持つサンプルポイントを同じクラスにクラスタし、各クラス内の自己アテンションを計算する。
また,各枝の高周波・低周波情報を並列構造を用いて個別に集約するインセプション機能アグリゲータも導入した。
論文 参考訳(メタデータ) (2023-03-08T14:11:05Z) - Learning a Task-specific Descriptor for Robust Matching of 3D Point
Clouds [40.81429160296275]
我々は、干渉下での正しい点対応を一貫して記述するために、頑健なタスク固有の特徴記述子を学習する。
EDFNetは2つの側面から発展し,まず,その反復的局所構造を利用して対応性を向上させる。
論文 参考訳(メタデータ) (2022-10-26T17:57:23Z) - Learning to Register Unbalanced Point Pairs [10.369750912567714]
最近の3D登録法は,大規模あるいは部分的に重複する点対を効果的に扱うことができる。
非平衡点対に対する新しい3次元登録手法であるUPPNetを提案する。
論文 参考訳(メタデータ) (2022-07-09T08:03:59Z) - IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding
Alignment [58.8330387551499]
我々は、点方向軌跡(すなわち滑らかな曲線)の推定として問題を定式化する。
本稿では,学習した時間的一貫性の助けを借りて問題を解消する,エンドツーエンドのディープラーニングフレームワークであるIDEA-Netを提案する。
各種点群における本手法の有効性を実証し, 定量的かつ視覚的に, 最先端の手法に対する大幅な改善を観察する。
論文 参考訳(メタデータ) (2022-03-22T10:14:08Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - PCAM: Product of Cross-Attention Matrices for Rigid Registration of
Point Clouds [79.99653758293277]
PCAMは、キー要素がクロスアテンション行列のポイントワイズ積であるニューラルネットワークである。
そこで本研究では,PCAMがステップ(a)とステップ(b)をディープネットを介して共同で解決する手法によって,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-04T09:23:27Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
点雲は非秩序であり、その密度は著しく一様ではないため、点雲の3次元運動の推定は困難である。
本稿では,sparse convolution-transformer network (sctn) という新しいアーキテクチャを提案する。
学習した関係に基づく文脈情報が豊富で,対応点の一致に役立ち,シーンフローの推定に有効であることを示す。
論文 参考訳(メタデータ) (2021-05-10T15:16:14Z) - DeepCLR: Correspondence-Less Architecture for Deep End-to-End Point
Cloud Registration [12.471564670462344]
この研究は、ディープニューラルネットワークを用いたポイントクラウド登録の問題に対処する。
重なり合うデータ内容を持つ2つの点雲間のアライメントを予測する手法を提案する。
提案手法は,最先端の精度と比較手法の最低実行時間を実現する。
論文 参考訳(メタデータ) (2020-07-22T08:20:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。