Federated Learning with Heterogeneous Data: A Superquantile Optimization
Approach
- URL: http://arxiv.org/abs/2112.09429v1
- Date: Fri, 17 Dec 2021 11:00:23 GMT
- Title: Federated Learning with Heterogeneous Data: A Superquantile Optimization
Approach
- Authors: Krishna Pillutla, Yassine Laguel, J\'er\^ome Malick, Zaid Harchaoui
- Abstract summary: We present a federated learning framework that is designed to robustly deliver good performance across individual clients with heterogeneous data.
The proposed approach hinges upon aquantile-based learning training that captures the tail statistics of the error.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a federated learning framework that is designed to robustly
deliver good predictive performance across individual clients with
heterogeneous data. The proposed approach hinges upon a superquantile-based
learning objective that captures the tail statistics of the error distribution
over heterogeneous clients. We present a stochastic training algorithm which
interleaves differentially private client reweighting steps with federated
averaging steps. The proposed algorithm is supported with finite time
convergence guarantees that cover both convex and non-convex settings.
Experimental results on benchmark datasets for federated learning demonstrate
that our approach is competitive with classical ones in terms of average error
and outperforms them in terms of tail statistics of the error.
Related papers
- Distributionally Robust Clustered Federated Learning: A Case Study in Healthcare [9.433126190164224]
We introduce a novel algorithm, which we term Cross-silo Robust Clustered Federated Learning (CS-RCFL)
We construct ambiguity sets around each client's empirical distribution that capture possible distribution shifts in the local data.
We then propose a model-agnostic integer fractional program to determine the optimal distributionally robust clustering of clients into coalitions.
arXiv Detail & Related papers (2024-10-09T16:25:01Z) - Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
This paper introduces a novel structured unsupervised ensemble learning model (SUEL)
It exploits the dependency between a set of predictors with continuous predictive scores, rank the predictors without labeled data and combine them to an ensembled score with weights.
The efficacy of the proposed methods is rigorously assessed through both simulation studies and real-world application of risk genes discovery.
arXiv Detail & Related papers (2024-08-14T20:14:42Z) - Decoupled Federated Learning on Long-Tailed and Non-IID data with
Feature Statistics [20.781607752797445]
We propose a two-stage Decoupled Federated learning framework using Feature Statistics (DFL-FS)
In the first stage, the server estimates the client's class coverage distributions through masked local feature statistics clustering.
In the second stage, DFL-FS employs federated feature regeneration based on global feature statistics to enhance the model's adaptability to long-tailed data distributions.
arXiv Detail & Related papers (2024-03-13T09:24:59Z) - Provably Personalized and Robust Federated Learning [47.50663360022456]
We propose simple algorithms which identify clusters of similar clients and train a personalized modelper-cluster.
The convergence rates of our algorithmsally match those obtained if we knew the true underlying clustering of the clients and are provably robust in the Byzantine setting.
arXiv Detail & Related papers (2023-06-14T09:37:39Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Auto-weighted Robust Federated Learning with Corrupted Data Sources [7.475348174281237]
Federated learning provides a communication-efficient and privacy-preserving training process.
Standard federated learning techniques that naively minimize an average loss function are vulnerable to data corruptions.
We propose Auto-weighted Robust Federated Learning (arfl) to provide robustness against corrupted data sources.
arXiv Detail & Related papers (2021-01-14T21:54:55Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.