Interpretable and Interactive Deep Multiple Instance Learning for Dental
Caries Classification in Bitewing X-rays
- URL: http://arxiv.org/abs/2112.09694v2
- Date: Tue, 26 Sep 2023 15:59:35 GMT
- Title: Interpretable and Interactive Deep Multiple Instance Learning for Dental
Caries Classification in Bitewing X-rays
- Authors: Benjamin Bergner, Csaba Rohrer, Aiham Taleb, Martha Duchrau, Guilherme
De Leon, Jonas Almeida Rodrigues, Falk Schwendicke, Joachim Krois, Christoph
Lippert
- Abstract summary: We propose a simple and efficient image classification architecture based on deep multiple instance learning.
Our approach contributes in two ways: First, it outputs a heatmap of local patch classification probabilities despite being trained with weak image-level labels.
In contrast to existing methods, the human user can faithfully interpret predictions and interact with the model to decide which regions to attend to.
- Score: 6.98282810587309
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a simple and efficient image classification architecture based on
deep multiple instance learning, and apply it to the challenging task of caries
detection in dental radiographs. Technically, our approach contributes in two
ways: First, it outputs a heatmap of local patch classification probabilities
despite being trained with weak image-level labels. Second, it is amenable to
learning from segmentation labels to guide training. In contrast to existing
methods, the human user can faithfully interpret predictions and interact with
the model to decide which regions to attend to. Experiments are conducted on a
large clinical dataset of $\sim$38k bitewings ($\sim$316k teeth), where we
achieve competitive performance compared to various baselines. When guided by
an external caries segmentation model, a significant improvement in
classification and localization performance is observed.
Related papers
- Semi-supervised classification of dental conditions in panoramic radiographs using large language model and instance segmentation: A real-world dataset evaluation [6.041146512190833]
A semi-supervised learning framework is proposed to classify thirteen dental conditions on panoramic radiographs.
The solution demonstrated an accuracy level comparable to that of a junior specialist.
arXiv Detail & Related papers (2024-06-25T19:56:12Z) - Explanations of Classifiers Enhance Medical Image Segmentation via
End-to-end Pre-training [37.11542605885003]
Medical image segmentation aims to identify and locate abnormal structures in medical images, such as chest radiographs, using deep neural networks.
Our work collects explanations from well-trained classifiers to generate pseudo labels of segmentation tasks.
We then use Integrated Gradients (IG) method to distill and boost the explanations obtained from the classifiers, generating massive diagnosis-oriented localization labels (DoLL)
These DoLL-annotated images are used for pre-training the model before fine-tuning it for downstream segmentation tasks, including COVID-19 infectious areas, lungs, heart, and clavicles.
arXiv Detail & Related papers (2024-01-16T16:18:42Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Weakly supervised segmentation with point annotations for histopathology
images via contrast-based variational model [7.021021047695508]
We propose a contrast-based variational model to generate segmentation results for histopathology images.
The proposed method considers the common characteristics of target regions in histopathology images and can be trained in an end-to-end manner.
It can generate more regionally consistent and smoother boundary segmentation, and is more robust to unlabeled novel' regions.
arXiv Detail & Related papers (2023-04-07T10:12:21Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Symbiotic Adversarial Learning for Attribute-based Person Search [86.7506832053208]
We present a symbiotic adversarial learning framework, called SAL.Two GANs sit at the base of the framework in a symbiotic learning scheme.
Specifically, two different types of generative adversarial networks learn collaboratively throughout the training process.
arXiv Detail & Related papers (2020-07-19T07:24:45Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
We propose a novel approach to the semantic segmentation of medical chest X-ray images with only image-level class labels as supervision.
We show that this approach is applicable to chest X-rays for detecting an anomalous volume of air between the lung and the chest wall.
arXiv Detail & Related papers (2020-07-01T20:48:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.