Predicting Topological Quantum Phase Transition via Multipartite
Entanglement from Dynamics
- URL: http://arxiv.org/abs/2212.13252v1
- Date: Mon, 26 Dec 2022 18:42:05 GMT
- Title: Predicting Topological Quantum Phase Transition via Multipartite
Entanglement from Dynamics
- Authors: Leela Ganesh Chandra Lakkaraju, Sudip Kumar Haldar, Aditi Sen De
- Abstract summary: An exactly solvable Kitaev model in a two-dimensional square lattice exhibits a topological quantum phase transition.
We show that features of the dynamical state, such as Loschmidt echo, time-averaged multipartite entanglement, can determine whether the initial state belongs to the topological phase or not.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An exactly solvable Kitaev model in a two-dimensional square lattice exhibits
a topological quantum phase transition which is different from the
symmetry-breaking transition at zero temperature. When the ground state of a
non-linearly perturbed Kitaev model with different strengths of perturbation
taken as the initial state is quenched to a pure Kitaev model, we demonstrate
that various features of the dynamical state, such as Loschmidt echo,
time-averaged multipartite entanglement, can determine whether the initial
state belongs to the topological phase or not. Moreover, the derivatives of the
quantifiers can faithfully identify the topological quantum phase transition,
present in equilibrium. When the individual qubits of the lattice interact with
the local thermal bath repeatedly, we observe that block entanglement can
nevertheless distinguish the phases from which the system starts evolution.
Related papers
- Dynamical Quantum Phase Transition and Thermal Equilibrium in the Lattice Thirring Model [2.1677452722087884]
We simulate the evolution of the lattice Thirring model quenched out of equilibrium in both the critical and massive phases.
We identify a threshold in the energy density of the initial state, necessary for a dynamical quantum phase transition to be present.
arXiv Detail & Related papers (2024-07-16T00:51:01Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Topological phase transitions at finite temperature [0.0]
We introduce two main aspects to the theory of mixed state topology.
First, we discover topological phase transitions as a function of the temperature T, manifesting as changes in winding number of the EGP accumulated over a closed loop in parameter space.
Second, we demonstrate that the EGP itself becomes quantized when key symmetries are present, allowing it to be viewed as a topological marker which can undergo equilibrium topological transitions at non-zero temperatures.
arXiv Detail & Related papers (2022-08-18T18:00:00Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Predicting Critical Phases from Entanglement Dynamics in XXZ Alternating
Chain [0.0]
The quantum XXZ spin model with alternating bond strengths under magnetic field has a rich equilibrium phase diagram.
We show that the nearest neighbor bipartite and multipartite entanglement can detect quantum critical lines and phases in this model.
arXiv Detail & Related papers (2021-12-22T18:02:51Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Characterizing Topological Excitations of a Long-Range Heisenberg Model
with Trapped Ions [0.0]
We propose a Floquet protocol to realize the antiferromagnetic Heisenberg model with power-law decaying interactions.
We show that this model features a quantum phase transition from a liquid to a valence bond solid that spontaneously breaks lattice translational symmetry.
We moreover introduce an interferometric protocol to characterize the topological excitations and the bulk topological invariants of the interacting many-body system.
arXiv Detail & Related papers (2020-12-16T19:00:02Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.