Measurement-Induced Entanglement Phase Transition in Random Bilocal
Circuits
- URL: http://arxiv.org/abs/2201.12704v2
- Date: Tue, 1 Feb 2022 15:23:08 GMT
- Title: Measurement-Induced Entanglement Phase Transition in Random Bilocal
Circuits
- Authors: Xuyang Yu and Xiao-Liang Qi
- Abstract summary: We study the dynamics of averaged purity for a simple $N$-qudit Brownian circuit model with all-to-all random interaction and measurements.
We show that there are two phases distinguished by the behavior of the total system entropy in the long time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Measurement-induced entanglement phase transitions, caused by the competition
between entangling unitary dynamics and disentangling projective measurements,
have been studied in various random circuit models in recent years. In this
paper, we study the dynamics of averaged purity for a simple $N$-qudit Brownian
circuit model with all-to-all random interaction and measurements. In the
large-$N$ limit, our model is mapped to a one-dimensional quantum chain in the
semi-classical limit, which allows us to analytically study critical behaviors
and various other properties of the model. We show that there are two phases
distinguished by the behavior of the total system entropy in the long time. In
addition, the two phases also have distinct subsystem entropy behavior. The low
measurement rate phase has a first-derivative discontinuity in the behavior of
second Renyi entropy versus subsystem size, similar to the "Page curve" of a
random state, while the other phase has a smooth entropy curve.
Related papers
- Measurement induced phase transition in the central spin model: second Rényi entropy in dual space approach [0.0]
We conduct a numerical investigation of the dynamics of the central spin model in the presence of measurement processes.
To characterize the measurement-induced phase transition in this system, we employ a recently developed method based on second R'enyi entropy in dual space.
arXiv Detail & Related papers (2024-04-24T08:07:49Z) - Bulk and boundary entanglement transitions in the projective gauge-Higgs
model [0.0]
In quantum many-body spin systems, the interplay between the entangling effect of multi-qubit Pauli measurements and the disentangling effect of single-qubit Pauli measurements may give rise to two competing effects.
We numerically investigate a measurement-based model associated with the $(2+1)$d $mathbbZ$ Fradkin-Shenker Hamiltonian model.
arXiv Detail & Related papers (2024-02-18T23:44:51Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Measurement-induced topological entanglement transitions in symmetric
random quantum circuits [0.0]
We study a class of (1+1)D symmetric random quantum circuits with two competing types of measurements.
The circuit exhibits a rich phase diagram involving robust symmetry-protected topological (SPT), trivial, and volume law entangled phases.
arXiv Detail & Related papers (2020-04-15T18:00:00Z) - Classical Models of Entanglement in Monitored Random Circuits [0.0]
We show the evolution of entanglement entropy in quantum circuits composed of Haar-random gates and projective measurements.
We also establish a Markov model for the evolution of the zeroth R'enyi entropy and demonstrate that, in one dimension and in the limit of large local dimension, it coincides with the corresponding second-R'enyi-entropy model.
arXiv Detail & Related papers (2020-04-14T18:00:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.