論文の概要: Morpheme Boundary Detection & Grammatical Feature Prediction for
Gujarati : Dataset & Model
- arxiv url: http://arxiv.org/abs/2112.09860v1
- Date: Sat, 18 Dec 2021 06:58:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-22 13:02:25.879620
- Title: Morpheme Boundary Detection & Grammatical Feature Prediction for
Gujarati : Dataset & Model
- Title(参考訳): グジャラティの形態境界検出と文法的特徴予測 : データセットとモデル
- Authors: Jatayu Baxi, Dr. Brijesh Bhatt
- Abstract要約: We have used a Bi-Directional LSTM based approach to perform morpheme boundary detection and grammatical feature tagging。
これは、文法的特徴タグ付けと形態素境界検出タスクの両方を実行するGujarati言語のための最初のデータセットおよび形態素解析モデルである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing Natural Language Processing resources for a low resource language
is a challenging but essential task. In this paper, we present a Morphological
Analyzer for Gujarati. We have used a Bi-Directional LSTM based approach to
perform morpheme boundary detection and grammatical feature tagging. We have
created a data set of Gujarati words with lemma and grammatical features. The
Bi-LSTM based model of Morph Analyzer discussed in the paper handles the
language morphology effectively without the knowledge of any hand-crafted
suffix rules. To the best of our knowledge, this is the first dataset and morph
analyzer model for the Gujarati language which performs both grammatical
feature tagging and morpheme boundary detection tasks.
- Abstract(参考訳): 低リソース言語のための自然言語処理リソースの開発は難しいが不可欠な課題である。
本稿では,グジャラティの形態解析器について述べる。
形態素境界検出と文法的特徴タグ付けを行うために,双方向lstmに基づく手法を用いた。
補題と文法機能を備えたGujarati単語のデータセットを作成しました。
この論文で論じられたMorph AnalyzerのBi-LSTMベースのモデルは、手作りの接尾辞規則の知識なしに言語形態を効果的に扱う。
私たちの知る限りでは、これはgujarati言語で最初のデータセットとモーフィックアナライザモデルであり、文法的特徴のタグ付けとモーフィム境界検出タスクの両方を実行する。
関連論文リスト
- Morphosyntactic probing of multilingual BERT models [41.83131308999425]
言語モデルにおける形態情報の多言語探索のための広範囲なデータセットを提案する。
トレーニング済みのTransformerモデル (mBERT と XLM-RoBERTa) では,これらのタスク間で高い性能を実現することができる。
論文 参考訳(メタデータ) (2023-06-09T19:15:20Z) - Part-of-Speech Tagging of Odia Language Using statistical and Deep
Learning-Based Approaches [0.0]
本研究は,条件付きランダムフィールド (CRF) と深層学習に基づくアプローチ (CNN と Bi-LSTM) を用いて,Odia の音声タグ作成を支援することを目的とする。
文字列の特徴を持つBi-LSTMモデルと事前学習した単語ベクトルは,最先端の結果を得た。
論文 参考訳(メタデータ) (2022-07-07T12:15:23Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
本研究は,統計的,ニューラルベース,トランスフォーマーベースの機械学習手法に基づく形式性検出手法の体系的研究を初めて行う。
単言語,多言語,言語横断の3種類の実験を行った。
本研究は,モノリンガルおよび多言語形式分類タスクのためのトランスフォーマーベースモデルに対するChar BiLSTMモデルの克服を示す。
論文 参考訳(メタデータ) (2022-04-19T16:23:07Z) - Do Not Fire the Linguist: Grammatical Profiles Help Language Models
Detect Semantic Change [6.7485485663645495]
まず,10個のデータセット上での多言語ニューラル言語モデル(XLM-R)の性能を比較し,その性能を7つの言語で比較した。
この結果から,XLM-Rによる文法プロファイルのアンサンブルにより,ほとんどのデータセットや言語における意味変化検出性能が向上することが示唆された。
論文 参考訳(メタデータ) (2022-04-12T11:20:42Z) - Urdu Morphology, Orthography and Lexicon Extraction [0.0]
本稿では,Urdu言語の実装をソフトウェアAPIとして記述する。
我々は、正書法、形態学、辞書の抽出を扱う。
論文 参考訳(メタデータ) (2022-04-06T20:14:01Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Automatic Extraction of Rules Governing Morphological Agreement [103.78033184221373]
原文から第一パス文法仕様を抽出する自動フレームワークを開発する。
我々は、世界の多くの言語の文法の中核にあるモルフォシンタクティックな現象である合意を記述する規則の抽出に焦点をあてる。
我々のフレームワークはUniversal Dependenciesプロジェクトに含まれるすべての言語に適用され、有望な結果が得られます。
論文 参考訳(メタデータ) (2020-10-02T18:31:45Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z) - Exploring Software Naturalness through Neural Language Models [56.1315223210742]
ソフトウェア自然性仮説(Software Naturalness hypothesis)は、自然言語処理で使用されるのと同じ手法でプログラミング言語を理解することができると主張している。
この仮説は,事前学習されたトランスフォーマーベース言語モデルを用いて,コード解析タスクを実行することによって検討する。
論文 参考訳(メタデータ) (2020-06-22T21:56:14Z) - A Simple Joint Model for Improved Contextual Neural Lemmatization [60.802451210656805]
本稿では,20言語で最先端の成果を得られる,単純結合型ニューラルモデルを提案する。
本論文では,トレーニングと復号化に加えて,本モデルについて述べる。
論文 参考訳(メタデータ) (2019-04-04T02:03:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。