Fast and Robust Registration of Partially Overlapping Point Clouds
- URL: http://arxiv.org/abs/2112.09922v1
- Date: Sat, 18 Dec 2021 12:39:05 GMT
- Title: Fast and Robust Registration of Partially Overlapping Point Clouds
- Authors: Eduardo Arnold, Sajjad Mozaffari, Mehrdad Dianati
- Abstract summary: Real-time registration of partially overlapping point clouds has emerging applications in cooperative perception for autonomous vehicles.
Relative translation between point clouds in these applications is higher than in traditional SLAM and odometry applications.
We propose a novel registration method for partially overlapping point clouds where correspondences are learned using an efficient point-wise feature encoder.
- Score: 5.073765501263891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time registration of partially overlapping point clouds has emerging
applications in cooperative perception for autonomous vehicles and multi-agent
SLAM. The relative translation between point clouds in these applications is
higher than in traditional SLAM and odometry applications, which challenges the
identification of correspondences and a successful registration. In this paper,
we propose a novel registration method for partially overlapping point clouds
where correspondences are learned using an efficient point-wise feature
encoder, and refined using a graph-based attention network. This attention
network exploits geometrical relationships between key points to improve the
matching in point clouds with low overlap. At inference time, the relative pose
transformation is obtained by robustly fitting the correspondences through
sample consensus. The evaluation is performed on the KITTI dataset and a novel
synthetic dataset including low-overlapping point clouds with displacements of
up to 30m. The proposed method achieves on-par performance with
state-of-the-art methods on the KITTI dataset, and outperforms existing methods
for low overlapping point clouds. Additionally, the proposed method achieves
significantly faster inference times, as low as 410ms, between 5 and 35 times
faster than competing methods. Our code and dataset are available at
https://github.com/eduardohenriquearnold/fastreg.
Related papers
- Inferring Neural Signed Distance Functions by Overfitting on Single Noisy Point Clouds through Finetuning Data-Driven based Priors [53.6277160912059]
We propose a method to promote pros of data-driven based and overfitting-based methods for better generalization, faster inference, and higher accuracy in learning neural SDFs.
We introduce a novel statistical reasoning algorithm in local regions which is able to finetune data-driven based priors without signed distance supervision, clean point cloud, or point normals.
arXiv Detail & Related papers (2024-10-25T16:48:44Z) - Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
We introduce a novel framework for multiway point cloud mosaicking (named Wednesday)
At the core of our approach is ODIN, a learned pairwise registration algorithm that identifies overlaps and refines attention scores.
Tested on four diverse, large-scale datasets, our method state-of-the-art pairwise and rotation registration results by a large margin on all benchmarks.
arXiv Detail & Related papers (2024-03-30T17:29:13Z) - DIPR: Efficient Point Cloud Registration via Dynamic Iteration [4.491867613612359]
We introduce a novel Efficient Point Cloud Registration via Dynamic It framework, DIPR, that makes the neural network interactively focus on overlapping points based on sparser input points.
Our proposed approach achieves superior registration accuracy while significantly reducing computational time and GPU memory consumption compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-12-05T16:47:46Z) - Overlap-guided Gaussian Mixture Models for Point Cloud Registration [61.250516170418784]
Probabilistic 3D point cloud registration methods have shown competitive performance in overcoming noise, outliers, and density variations.
This paper proposes a novel overlap-guided probabilistic registration approach that computes the optimal transformation from matched Gaussian Mixture Model (GMM) parameters.
arXiv Detail & Related papers (2022-10-17T08:02:33Z) - Learning to Register Unbalanced Point Pairs [10.369750912567714]
Recent 3D registration methods can effectively handle large-scale or partially overlapping point pairs.
We present a novel 3D registration method, called UPPNet, for the unbalanced point pairs.
arXiv Detail & Related papers (2022-07-09T08:03:59Z) - GenReg: Deep Generative Method for Fast Point Cloud Registration [18.66568286698704]
We propose a new data-driven registration algorithm by investigating deep generative neural networks to point cloud registration.
The experiments on both ModelNet40 and 7Scene datasets demonstrate that the proposed algorithm achieves state-of-the-art accuracy and efficiency.
arXiv Detail & Related papers (2021-11-23T10:52:09Z) - PCAM: Product of Cross-Attention Matrices for Rigid Registration of
Point Clouds [79.99653758293277]
PCAM is a neural network whose key element is a pointwise product of cross-attention matrices.
We show that PCAM achieves state-of-the-art results among methods which, like us, solve steps (a) and (b) jointly via deepnets.
arXiv Detail & Related papers (2021-10-04T09:23:27Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
arXiv Detail & Related papers (2021-07-06T05:08:34Z) - End-to-End 3D Point Cloud Learning for Registration Task Using Virtual
Correspondences [17.70819292121181]
3D Point cloud registration is still a very challenging topic due to the difficulty in finding the rigid transformation between two point clouds.
In this paper, we present an end-to-end deep-learning based approach to resolve the point cloud registration problem.
arXiv Detail & Related papers (2020-11-30T06:55:05Z) - DeepCLR: Correspondence-Less Architecture for Deep End-to-End Point
Cloud Registration [12.471564670462344]
This work addresses the problem of point cloud registration using deep neural networks.
We propose an approach to predict the alignment between two point clouds with overlapping data content, but displaced origins.
Our approach achieves state-of-the-art accuracy and the lowest run-time of the compared methods.
arXiv Detail & Related papers (2020-07-22T08:20:57Z) - RPM-Net: Robust Point Matching using Learned Features [79.52112840465558]
RPM-Net is a less sensitive and more robust deep learning-based approach for rigid point cloud registration.
Unlike some existing methods, our RPM-Net handles missing correspondences and point clouds with partial visibility.
arXiv Detail & Related papers (2020-03-30T13:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.