Dunkl-Klein-Gordon equation in three-dimensions: The Klein-Gordon
oscillator and Coulomb Potential
- URL: http://arxiv.org/abs/2112.09948v1
- Date: Sat, 18 Dec 2021 14:43:36 GMT
- Title: Dunkl-Klein-Gordon equation in three-dimensions: The Klein-Gordon
oscillator and Coulomb Potential
- Authors: B. Hamil and B.C. L\"utf\"uo\u{g}lu
- Abstract summary: We consider a relativistic quantum mechanical differential equation in the presence of Dunkl operator-based deformation.
We investigate solutions for two important problems in three-dimensional space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies show that deformations in quantum mechanics are inevitable. In
this contribution, we consider a relativistic quantum mechanical differential
equation in the presence of Dunkl operator-based deformation and we investigate
solutions for two important problems in three-dimensional spatial space. To
this end, after introducing the Dunkl quantum mechanics, we examine the
Dunkl-Klein-Gordon oscillator solutions with the Cartesian and spherical
coordinates. In both coordinate systems, we find that the differential
equations are separable and their eigenfunctions can be given in terms of the
associate Laguerre and Jacobi polynomials. We observe how the Dunkl formalism
is affecting the eigenvalues as well as the eigenfunctions. As a second
problem, we examine the Dunkl-Klein-Gordon equation with the Coulomb potential.
We obtain the eigenvalue, their corresponding eigenfunctions, and the
Dunkl-fine structure terms.
Related papers
- Dunkl-Klein-Gordon Equation in Higher Dimensions [0.0]
We replace the standard partial derivatives in the Klein-Gordon equation with Dunkl derivatives.
We obtain exact analytical solutions for the eigenvalues and eigenfunctions of the Dunkl-Klein-Gordon equation in higher dimensions.
arXiv Detail & Related papers (2024-09-19T11:10:12Z) - Dunkl-Schrodinger Equation in Higher Dimension [0.0]
This paper presents analytical solutions for eigenvalues and eigenfunctions of the Schr"odinger equation in higher dimensions.
Two fundamental quantum mechanical problems are examined in their exact forms.
The behavior of the energy eigenvalue functions are illustrated graphically with the reduced probability densities.
arXiv Detail & Related papers (2024-09-19T11:03:25Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - An application of the HeunB function [0.0]
How does the inclusion of the gravitational potential alter an otherwise exact quantum mechanical result?
The Schrodinger equation for the reduced mass is then solved to obtain the parabolic cylinder functions as eigenfunctions and the eigenvalues of the reduced Hamiltonian are calculated exactly.
The eigenvalues are the determined from a recent series expansion in terms of the Hermite functions for the solution of the differential equation whose exact solution is the aforesaid HeunB function.
arXiv Detail & Related papers (2022-12-17T17:04:49Z) - Dispersion chain of quantum mechanics equations [0.0]
The paper considers the construction of a new chain of equations of quantum mechanics of high kinematical values.
The proposed approach can be applied to consideration of classical and quantum systems with radiation.
arXiv Detail & Related papers (2022-09-28T12:58:19Z) - Application of regularization maps to quantum mechanical systems in 2
and 3 dimensions [0.0]
We map the classical system where a particle moves under the combined influence of $frac1r$ and $r2$ potentials.
We derive the eigen spectrum of the Hydrogen atom in presence of an additional harmonic potential.
Exploiting this equivalence, the solution to the Schr"odinger equation of the former is obtained from the solutions of the later.
arXiv Detail & Related papers (2021-02-12T11:06:38Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.