Data-Driven Reachability analysis and Support set Estimation with
Christoffel Functions
- URL: http://arxiv.org/abs/2112.09995v1
- Date: Sat, 18 Dec 2021 20:25:34 GMT
- Title: Data-Driven Reachability analysis and Support set Estimation with
Christoffel Functions
- Authors: Alex Devonport, Forest Yang, Laurent El Ghaoui, and Murat Arcak
- Abstract summary: We present algorithms for estimating the forward reachable set of a dynamical system.
The produced estimate is the sublevel set of a function called an empirical inverse Christoffel function.
In addition to reachability analysis, the same approach can be applied to general problems of estimating the support of a random variable.
- Score: 8.183446952097528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present algorithms for estimating the forward reachable set of a dynamical
system using only a finite collection of independent and identically
distributed samples. The produced estimate is the sublevel set of a function
called an empirical inverse Christoffel function: empirical inverse Christoffel
functions are known to provide good approximations to the support of
probability distributions. In addition to reachability analysis, the same
approach can be applied to general problems of estimating the support of a
random variable, which has applications in data science towards detection of
novelties and outliers in data sets. In applications where safety is a concern,
having a guarantee of accuracy that holds on finite data sets is critical. In
this paper, we prove such bounds for our algorithms under the Probably
Approximately Correct (PAC) framework. In addition to applying classical
Vapnik-Chervonenkis (VC) dimension bound arguments, we apply the PAC-Bayes
theorem by leveraging a formal connection between kernelized empirical inverse
Christoffel functions and Gaussian process regression models. The bound based
on PAC-Bayes applies to a more general class of Christoffel functions than the
VC dimension argument, and achieves greater sample efficiency in experiments.
Related papers
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
Temporal Difference (TD) learning, arguably the most widely used for policy evaluation, serves as a natural framework for this purpose.
In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
This paper presents a novel framework for estimating the joint PMF and automatically inferring its rank from observed data.
We derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Additionally, we develop a scalable version of the VI-based approach by leveraging variational inference (SVI)
Experiments involving both synthetic data and real movie recommendation data illustrate the advantages of our VI and SVI-based methods in terms of estimation accuracy, automatic rank detection, and computational efficiency.
arXiv Detail & Related papers (2024-10-08T20:07:49Z) - Uncertainty Quantification with Bayesian Higher Order ReLU KANs [0.0]
We introduce the first method of uncertainty quantification in the domain of Kolmogorov-Arnold Networks, specifically focusing on (Higher Order) ReLUKANs.
We validate our method through a series of closure tests, including simple one-dimensional functions.
We demonstrate the method's ability to correctly identify functional dependencies introduced through the inclusion of a term.
arXiv Detail & Related papers (2024-10-02T15:57:18Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - Counterfactual Explanations for Arbitrary Regression Models [8.633492031855655]
We present a new method for counterfactual explanations (CFEs) based on Bayesian optimisation.
Our method is a globally convergent search algorithm with support for arbitrary regression models and constraints like feature sparsity and actionable recourse.
arXiv Detail & Related papers (2021-06-29T09:53:53Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Learning Inconsistent Preferences with Gaussian Processes [14.64963271587818]
We revisit widely used preferential Gaussian processes by Chu et al.(2005) and challenge their modelling assumption that imposes rankability of data items via latent utility function values.
We propose a generalisation of pgp which can capture more expressive latent preferential structures in the data.
Our experimental findings support the conjecture that violations of rankability are ubiquitous in real-world preferential data.
arXiv Detail & Related papers (2020-06-06T11:57:45Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Misspecification-robust likelihood-free inference in high dimensions [13.934999364767918]
We introduce an extension of the popular Bayesian optimisation based approach to approximate discrepancy functions in a probabilistic manner.
Our approach achieves computational scalability for higher dimensional parameter spaces by using separate acquisition functions and discrepancies for each parameter.
The method successfully performs computationally efficient inference in a 100-dimensional space on canonical examples and compares favourably to existing modularised ABC methods.
arXiv Detail & Related papers (2020-02-21T16:06:11Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
We develop techniques which exploit spectral properties of the data matrix to obtain improved approximation guarantees.
Our approach leads to significantly better bounds for datasets with known rates of singular value decay.
We show that both our improved bounds and the multiple-descent curve can be observed on real datasets simply by varying the RBF parameter.
arXiv Detail & Related papers (2020-02-21T00:43:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.