Misspecification-robust likelihood-free inference in high dimensions
- URL: http://arxiv.org/abs/2002.09377v4
- Date: Wed, 28 Aug 2024 06:44:23 GMT
- Title: Misspecification-robust likelihood-free inference in high dimensions
- Authors: Owen Thomas, Raquel Sá-Leão, Hermínia de Lencastre, Samuel Kaski, Jukka Corander, Henri Pesonen,
- Abstract summary: We introduce an extension of the popular Bayesian optimisation based approach to approximate discrepancy functions in a probabilistic manner.
Our approach achieves computational scalability for higher dimensional parameter spaces by using separate acquisition functions and discrepancies for each parameter.
The method successfully performs computationally efficient inference in a 100-dimensional space on canonical examples and compares favourably to existing modularised ABC methods.
- Score: 13.934999364767918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Likelihood-free inference for simulator-based statistical models has developed rapidly from its infancy to a useful tool for practitioners. However, models with more than a handful of parameters still generally remain a challenge for the Approximate Bayesian Computation (ABC) based inference. To advance the possibilities for performing likelihood-free inference in higher dimensional parameter spaces, we introduce an extension of the popular Bayesian optimisation based approach to approximate discrepancy functions in a probabilistic manner which lends itself to an efficient exploration of the parameter space. Our approach achieves computational scalability for higher dimensional parameter spaces by using separate acquisition functions and discrepancies for each parameter. The efficient additive acquisition structure is combined with exponentiated loss -likelihood to provide a misspecification-robust characterisation of the marginal posterior distribution for all model parameters. The method successfully performs computationally efficient inference in a 100-dimensional space on canonical examples and compares favourably to existing modularised ABC methods. We further illustrate the potential of this approach by fitting a bacterial transmission dynamics model to a real data set, which provides biologically coherent results on strain competition in a 30-dimensional parameter space.
Related papers
- Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
Surrogate models provide a quick-to-evaluate approximation to complex computational models.
We consider Bayesian inference for constructing statistical surrogates with input uncertainties and dimensionality reduction.
We demonstrate intrinsic and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
arXiv Detail & Related papers (2024-04-23T09:22:35Z) - Nonparametric Automatic Differentiation Variational Inference with
Spline Approximation [7.5620760132717795]
We develop a nonparametric approximation approach that enables flexible posterior approximation for distributions with complicated structures.
Compared with widely-used nonparametrical inference methods, the proposed method is easy to implement and adaptive to various data structures.
Experiments demonstrate the efficiency of the proposed method in approximating complex posterior distributions and improving the performance of generative models with incomplete data.
arXiv Detail & Related papers (2024-03-10T20:22:06Z) - Should We Learn Most Likely Functions or Parameters? [51.133793272222874]
We investigate the benefits and drawbacks of directly estimating the most likely function implied by the model and the data.
We find that function-space MAP estimation can lead to flatter minima, better generalization, and improved to overfitting.
arXiv Detail & Related papers (2023-11-27T16:39:55Z) - A Metaheuristic for Amortized Search in High-Dimensional Parameter
Spaces [0.0]
We propose a new metaheuristic that drives dimensionality reductions from feature-informed transformations.
DR-FFIT implements an efficient sampling strategy that facilitates a gradient-free parameter search in high-dimensional spaces.
Our test data show that DR-FFIT boosts the performances of random-search and simulated-annealing against well-established metaheuristics.
arXiv Detail & Related papers (2023-09-28T14:25:14Z) - Robust probabilistic inference via a constrained transport metric [8.85031165304586]
We offer a novel alternative by constructing an exponentially tilted empirical likelihood carefully designed to concentrate near a parametric family of distributions.
The proposed approach finds applications in a wide variety of robust inference problems, where we intend to perform inference on the parameters associated with the centering distribution.
We demonstrate superior performance of our methodology when compared against state-of-the-art robust Bayesian inference methods.
arXiv Detail & Related papers (2023-03-17T16:10:06Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - High-Dimensional Bayesian Optimization with Sparse Axis-Aligned
Subspaces [14.03847432040056]
We argue that a surrogate model defined on sparse axis-aligned subspaces offer an attractive compromise between flexibility and parsimony.
We demonstrate that our approach, which relies on Hamiltonian Monte Carlo for inference, can rapidly identify sparse subspaces relevant to modeling the unknown objective function.
arXiv Detail & Related papers (2021-02-27T23:06:24Z) - Intrinsic Dimensionality Explains the Effectiveness of Language Model
Fine-Tuning [52.624194343095304]
We argue that analyzing fine-tuning through the lens of intrinsic dimension provides us with empirical and theoretical intuitions.
We empirically show that common pre-trained models have a very low intrinsic dimension.
arXiv Detail & Related papers (2020-12-22T07:42:30Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
We present a novel Markov chain Monte Carlo algorithm for posterior inference that adaptively sets the truncation level using auxiliary slice variables.
The efficacy of the proposed algorithm is evaluated on several popular nonparametric models.
arXiv Detail & Related papers (2020-06-24T17:53:53Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.