論文の概要: Deep Surrogate for Direct Time Fluid Dynamics
- arxiv url: http://arxiv.org/abs/2112.10296v1
- Date: Thu, 16 Dec 2021 10:08:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-21 18:24:38.639434
- Title: Deep Surrogate for Direct Time Fluid Dynamics
- Title(参考訳): 直接時間流体力学のためのディープサーロゲート
- Authors: Lucas Meyer (UGA, LIG, EDF R&D, Grenoble INP, DATAMOVE ), Louen
Pottier (ENS Paris Saclay, EDF R&D), Alejandro Ribes (EDF R&D), Bruno Raffin
(Grenoble INP, LIG, DATAMOVE, UGA)
- Abstract要約: グラフニューラルネットワーク(GNN)は、CFDシミュレーションで一般的に使用される不規則メッシュの特異性に対処することができる。
我々は、不規則メッシュのための新しい直接時間GNNアーキテクチャを設計するために、現在進行中の作業を示す。
- 参考スコア(独自算出の注目度): 44.62475518267084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ubiquity of fluids in the physical world explains the need to accurately
simulate their dynamics for many scientific and engineering applications.
Traditionally, well established but resource intensive CFD solvers provide such
simulations. The recent years have seen a surge of deep learning surrogate
models substituting these solvers to alleviate the simulation process. Some
approaches to build data-driven surrogates mimic the solver iterative process.
They infer the next state of the fluid given its previous one. Others directly
infer the state from time input. Approaches also differ in their management of
the spatial information. Graph Neural Networks (GNN) can address the
specificity of the irregular meshes commonly used in CFD simulations. In this
article, we present our ongoing work to design a novel direct time GNN
architecture for irregular meshes. It consists of a succession of graphs of
increasing size connected by spline convolutions. We test our architecture on
the Von K{\'a}rm{\'a}n's vortex street benchmark. It achieves small
generalization errors while mitigating error accumulation along the trajectory.
- Abstract(参考訳): 物理界における流体の普遍性は、科学や工学の多くの応用において、その動力学を正確にシミュレートする必要性を説明している。
伝統的に、確立されているがリソース集約型CFDソルバはそのようなシミュレーションを提供する。
近年、シミュレーションプロセスを緩和するためにこれらの解法を代用するディープラーニングサロゲートモデルが急増している。
データ駆動サロゲートを構築するいくつかのアプローチは、ソルバ反復プロセスを模倣する。
彼らは流体の次の状態を以前の状態から推測する。
時間入力から直接状態を推測するものもある。
空間情報の管理にもアプローチは異なっている。
グラフニューラルネットワーク(GNN)は、CFDシミュレーションで一般的に使用される不規則メッシュの特異性に対処することができる。
本稿では,不規則メッシュのための新しい直接時間GNNアーキテクチャの設計について述べる。
スプライン畳み込みによって連結される大きさが増大するグラフの連続からなる。
我々は、von k{\'a}rm{\'a}nのvortex streetベンチマークでアーキテクチャをテストする。
軌道に沿った誤差蓄積を緩和しながら、小さな一般化誤差を達成する。
関連論文リスト
- FMint: Bridging Human Designed and Data Pretrained Models for Differential Equation Foundation Model [5.748690310135373]
我々は、人間設計モデルとデータ駆動モデルとのギャップを埋めるために、textbfFMintという新しいマルチモーダル基盤モデルを提案する。
FMintは、インコンテキスト学習を備えたデコーダのみのトランスフォーマーアーキテクチャに基づいて、数値データとテキストデータの両方を用いて、普遍的なエラー訂正スキームを学習する。
本研究は,従来の数値解法と比較して,精度と効率の両面から提案モデルの有効性を実証するものである。
論文 参考訳(メタデータ) (2024-04-23T02:36:47Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - Graph Convolutional Networks for Simulating Multi-phase Flow and Transport in Porous Media [0.0]
データ駆動サロゲートモデリングは、高忠実度数値シミュレータの安価な代替手段を提供する。
CNNは偏微分方程式の解を近似するのに強力であるが、CNNが不規則かつ非構造的なシミュレーションメッシュを扱うことは依然として困難である。
グラフ畳み込みネットワーク(GCN)に基づく代理モデルを構築し,多相流と多孔質媒体の輸送過程の時空間解を近似する。
論文 参考訳(メタデータ) (2023-07-10T09:59:35Z) - Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural
Network Emulators of Geophysical Turbulence [0.0]
しばしば見過ごされる処理ステップがエミュレータの予測品質にどのように影響するかを検討する。
1)空間ベクトル自己回帰(NVAR)の形式、(2)エコー状態ネットワーク(ESN)の形式。
いずれの場合も、トレーニングデータのサブサンプリングは、数値拡散に類似した小さなスケールでのバイアスの増加につながる。
論文 参考訳(メタデータ) (2023-04-28T21:34:53Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Simulating Liquids with Graph Networks [25.013244956897832]
流体力学を学習するためのグラフニューラルネットワーク(GNN)について検討する。
以上の結果から,GNNなどの学習モデルでは,学習セットが他の問題固有の相関関係を欠きない限り,基礎となる力学を正確に学習できないことが示唆された。
論文 参考訳(メタデータ) (2022-03-14T15:39:27Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
多孔質媒体の多相流に関する物理に制約された勾配に基づくディープニューラルネットワーク(GDNN)について述べる。
GDNNが非線型応答の非線型パターンを効果的に予測できることを実証する。
論文 参考訳(メタデータ) (2021-04-30T02:14:00Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。