Diaformer: Automatic Diagnosis via Symptoms Sequence Generation
- URL: http://arxiv.org/abs/2112.10433v1
- Date: Mon, 20 Dec 2021 10:26:59 GMT
- Title: Diaformer: Automatic Diagnosis via Symptoms Sequence Generation
- Authors: Junying Chen, Dongfang Li, Qingcai Chen, Wenxiu Zhou, Xin Liu
- Abstract summary: We propose a simple but effective automatic Diagnosis model based on Transformer (Diaformer)
We firstly design the symptom attention framework to learn the generation of symptom inquiry and the disease diagnosis.
Experiments on three public datasets show that our model outperforms baselines on disease diagnosis by 1%, 6% and 11.5% with the highest training efficiency.
- Score: 14.90347470039301
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic diagnosis has attracted increasing attention but remains
challenging due to multi-step reasoning. Recent works usually address it by
reinforcement learning methods. However, these methods show low efficiency and
require taskspecific reward functions. Considering the conversation between
doctor and patient allows doctors to probe for symptoms and make diagnoses, the
diagnosis process can be naturally seen as the generation of a sequence
including symptoms and diagnoses. Inspired by this, we reformulate automatic
diagnosis as a symptoms Sequence Generation (SG) task and propose a simple but
effective automatic Diagnosis model based on Transformer (Diaformer). We
firstly design the symptom attention framework to learn the generation of
symptom inquiry and the disease diagnosis. To alleviate the discrepancy between
sequential generation and disorder of implicit symptoms, we further design
three orderless training mechanisms. Experiments on three public datasets show
that our model outperforms baselines on disease diagnosis by 1%, 6% and 11.5%
with the highest training efficiency. Detailed analysis on symptom inquiry
prediction demonstrates that the potential of applying symptoms sequence
generation for automatic diagnosis.
Related papers
- DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - CoAD: Automatic Diagnosis through Symptom and Disease Collaborative
Generation [37.25451059168202]
CoAD is a disease and symptom collaborative generation framework.
It incorporates several key innovations to improve automatic disease diagnosis.
It achieves an average 2.3% improvement over previous state-of-the-art results in automatic disease diagnosis.
arXiv Detail & Related papers (2023-07-17T07:24:55Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
For those seeking healthcare advice online, AI based dialogue agents capable of interacting with patients to perform automatic disease diagnosis are a viable option.
This can be formulated as a problem of sequential feature (symptom) selection and classification for which reinforcement learning (RL) approaches have been proposed as a natural solution.
We propose a Multi-Model-Fused Actor-Critic (MMF-AC) RL framework that consists of a generative actor network and a diagnostic critic network.
arXiv Detail & Related papers (2022-06-08T03:06:16Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
arXiv Detail & Related papers (2022-06-02T07:57:17Z) - DxFormer: A Decoupled Automatic Diagnostic System Based on
Decoder-Encoder Transformer with Dense Symptom Representations [26.337392652262103]
A diagnosis-oriented dialogue system queries the patient's health condition and makes predictions about possible diseases through continuous interaction with the patient.
We propose a decoupled automatic diagnostic framework DxFormer, which divides the diagnosis process into two steps: symptom inquiry and disease diagnosis.
Our proposed model can effectively learn doctors' clinical experience and achieve the state-of-the-art results in terms of symptom recall and diagnostic accuracy.
arXiv Detail & Related papers (2022-05-08T01:52:42Z) - Efficient Symptom Inquiring and Diagnosis via Adaptive Alignment of
Reinforcement Learning and Classification [0.6415701940560564]
We first propose a novel method for medical automatic diagnosis with symptom inquiring and disease diagnosing formulated as a reinforcement learning task and a classification task, respectively.
We create a new dataset extracted from the MedlinePlus knowledge base that contains more diseases and more complete symptom information.
Experimental evaluation results show that our method outperforms three recent state-of-the-art methods on different datasets.
arXiv Detail & Related papers (2021-12-01T11:25:42Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Proposing a System Level Machine Learning Hybrid Architecture and
Approach for a Comprehensive Autism Spectrum Disorder Diagnosis [1.2691047660244335]
Autism Spectrum Disorder (ASD) is a severe neuropsychiatric disorder that affects intellectual development, social behavior, and facial features.
We propose to develop a hybrid architecture fully utilizing both social behavior and facial feature data to improve the accuracy of diagnosing ASD.
arXiv Detail & Related papers (2021-09-18T04:33:09Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
Medical diagnosis assistant (MDA) aims to build an interactive diagnostic agent to sequentially inquire about symptoms for discriminating diseases.
This work attempts to address these critical issues in MDA by taking advantage of the causal diagram.
We propose a propensity-based patient simulator to effectively answer unrecorded inquiry by drawing knowledge from the other records.
arXiv Detail & Related papers (2020-03-14T02:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.