DxFormer: A Decoupled Automatic Diagnostic System Based on
Decoder-Encoder Transformer with Dense Symptom Representations
- URL: http://arxiv.org/abs/2205.03755v1
- Date: Sun, 8 May 2022 01:52:42 GMT
- Title: DxFormer: A Decoupled Automatic Diagnostic System Based on
Decoder-Encoder Transformer with Dense Symptom Representations
- Authors: Wei Chen, Cheng Zhong, Jiajie Peng, Zhongyu Wei
- Abstract summary: A diagnosis-oriented dialogue system queries the patient's health condition and makes predictions about possible diseases through continuous interaction with the patient.
We propose a decoupled automatic diagnostic framework DxFormer, which divides the diagnosis process into two steps: symptom inquiry and disease diagnosis.
Our proposed model can effectively learn doctors' clinical experience and achieve the state-of-the-art results in terms of symptom recall and diagnostic accuracy.
- Score: 26.337392652262103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diagnosis-oriented dialogue system queries the patient's health condition and
makes predictions about possible diseases through continuous interaction with
the patient. A few studies use reinforcement learning (RL) to learn the optimal
policy from the joint action space of symptoms and diseases. However, existing
RL (or Non-RL) methods cannot achieve sufficiently good prediction accuracy,
still far from its upper limit. To address the problem, we propose a decoupled
automatic diagnostic framework DxFormer, which divides the diagnosis process
into two steps: symptom inquiry and disease diagnosis, where the transition
from symptom inquiry to disease diagnosis is explicitly determined by the
stopping criteria. In DxFormer, we treat each symptom as a token, and formalize
the symptom inquiry and disease diagnosis to a language generation model and a
sequence classification model respectively. We use the inverted version of
Transformer, i.e., the decoder-encoder structure, to learn the representation
of symptoms by jointly optimizing the reinforce reward and cross entropy loss.
Extensive experiments on three public real-world datasets prove that our
proposed model can effectively learn doctors' clinical experience and achieve
the state-of-the-art results in terms of symptom recall and diagnostic
accuracy.
Related papers
- DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - CoAD: Automatic Diagnosis through Symptom and Disease Collaborative
Generation [37.25451059168202]
CoAD is a disease and symptom collaborative generation framework.
It incorporates several key innovations to improve automatic disease diagnosis.
It achieves an average 2.3% improvement over previous state-of-the-art results in automatic disease diagnosis.
arXiv Detail & Related papers (2023-07-17T07:24:55Z) - OpenClinicalAI: An Open and Dynamic Model for Alzheimer's Disease
Diagnosis [11.775648630734949]
Alzheimer's disease (AD) cannot be reversed or cured, but timely diagnosis can significantly reduce the burden of treatment and care.
Current research on AD diagnosis models usually regards the diagnosis task as a typical classification task.
We propose OpenClinicalAI for direct AD diagnosis in complex and uncertain clinical settings.
arXiv Detail & Related papers (2023-07-03T12:35:03Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
For those seeking healthcare advice online, AI based dialogue agents capable of interacting with patients to perform automatic disease diagnosis are a viable option.
This can be formulated as a problem of sequential feature (symptom) selection and classification for which reinforcement learning (RL) approaches have been proposed as a natural solution.
We propose a Multi-Model-Fused Actor-Critic (MMF-AC) RL framework that consists of a generative actor network and a diagnostic critic network.
arXiv Detail & Related papers (2022-06-08T03:06:16Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
arXiv Detail & Related papers (2022-06-02T07:57:17Z) - DDXPlus: A new Dataset for Medical Automatic Diagnosis [2.7126836481535213]
We present a large-scale synthetic dataset that includes a differential diagnosis, along with the ground truth pathology, for each patient.
As a proof-of-concept, we extend several existing AD and ASD systems to incorporate differential diagnosis.
We provide empirical evidence that using differentials in training signals is essential for such systems to learn to predict differentials.
arXiv Detail & Related papers (2022-05-18T18:03:39Z) - Diaformer: Automatic Diagnosis via Symptoms Sequence Generation [14.90347470039301]
We propose a simple but effective automatic Diagnosis model based on Transformer (Diaformer)
We firstly design the symptom attention framework to learn the generation of symptom inquiry and the disease diagnosis.
Experiments on three public datasets show that our model outperforms baselines on disease diagnosis by 1%, 6% and 11.5% with the highest training efficiency.
arXiv Detail & Related papers (2021-12-20T10:26:59Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Hierarchical Reinforcement Learning for Automatic Disease Diagnosis [52.111516253474285]
We propose to integrate a hierarchical policy structure of two levels into the dialogue systemfor policy learning.
The proposed policy structure is capable to deal with diagnosis problem including large number of diseases and symptoms.
arXiv Detail & Related papers (2020-04-29T15:02:41Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
Medical diagnosis assistant (MDA) aims to build an interactive diagnostic agent to sequentially inquire about symptoms for discriminating diseases.
This work attempts to address these critical issues in MDA by taking advantage of the causal diagram.
We propose a propensity-based patient simulator to effectively answer unrecorded inquiry by drawing knowledge from the other records.
arXiv Detail & Related papers (2020-03-14T02:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.