論文の概要: Turbo-Sim: a generalised generative model with a physical latent space
- arxiv url: http://arxiv.org/abs/2112.10629v2
- Date: Tue, 21 Dec 2021 08:52:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-22 12:01:24.935936
- Title: Turbo-Sim: a generalised generative model with a physical latent space
- Title(参考訳): Turbo-Sim:物理潜在空間を持つ一般化生成モデル
- Authors: Guillaume Qu\'etant, Mariia Drozdova, Vitaliy Kinakh, Tobias Golling,
Slava Voloshynovskiy
- Abstract要約: Turbo-Simは、ジェネレーティブモデルとして使用できる一般化されたオートエンコーダフレームワークである。
エンコーダとデコーダの両方の入力と出力の相互情報を最大化することにより、通常対向オートエンコーダに見られる損失項を再発見することができる。
我々のフレームワークはこれらのモデルを数学的に解釈可能とし、各損失項の重みを個別に設定することで、新しいモデルの多様性を実現する。
- 参考スコア(独自算出の注目度): 6.201770337181472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Turbo-Sim, a generalised autoencoder framework derived from
principles of information theory that can be used as a generative model. By
maximising the mutual information between the input and the output of both the
encoder and the decoder, we are able to rediscover the loss terms usually found
in adversarial autoencoders and generative adversarial networks, as well as
various more sophisticated related models. Our generalised framework makes
these models mathematically interpretable and allows for a diversity of new
ones by setting the weight of each loss term separately. The framework is also
independent of the intrinsic architecture of the encoder and the decoder thus
leaving a wide choice for the building blocks of the whole network. We apply
Turbo-Sim to a collider physics generation problem: the transformation of the
properties of several particles from a theory space, right after the collision,
to an observation space, right after the detection in an experiment.
- Abstract(参考訳): 本稿では,情報理論の原理から派生した汎用オートエンコーダフレームワークであるTurbo-Simについて述べる。
エンコーダとデコーダの出力の入力と出力の相互情報を最大化することで、敵のオートエンコーダや生成的な敵ネットワークに見られる損失項や、より洗練された関連モデルを再発見することができる。
一般化されたフレームワークは、これらのモデルを数学的に解釈可能とし、各損失項の重みを個別に設定することで、新しいモデルの多様性を実現する。
また、このフレームワークはエンコーダとデコーダの固有のアーキテクチャとは独立しており、ネットワーク全体のビルディングブロックに対して幅広い選択肢を残している。
衝突の直後に理論空間から観測空間へのいくつかの粒子の性質の変換を実験で検出した直後に行う衝突器物理生成問題に適用する。
関連論文リスト
- What Does It Mean to Be a Transformer? Insights from a Theoretical Hessian Analysis [8.008567379796666]
Transformerアーキテクチャは、間違いなくディープラーニングに革命をもたらした。
中心となる注意ブロックは、ディープラーニングにおける他のほとんどのアーキテクチャコンポーネントと形式と機能の違いです。
これらの外向きの表現の背後にある根本原因と、それらを管理する正確なメカニズムは、まだ理解されていないままである。
論文 参考訳(メタデータ) (2024-10-14T18:15:02Z) - On the Convergence of Encoder-only Shallow Transformers [62.639819460956176]
エンコーダのみの浅部変圧器のグローバル収束理論を現実的な条件下で構築する。
我々の結果は、現代のトランスフォーマー、特にトレーニング力学の理解を深める道を開くことができる。
論文 参考訳(メタデータ) (2023-11-02T20:03:05Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - A simple probabilistic neural network for machine understanding [0.0]
本稿では,機械理解のためのモデルとして,確率的ニューラルネットワークと内部表現の固定化について論じる。
内部表現は、それが最大関係の原理と、どのように異なる特徴が組み合わされるかについての最大無知を満たすことを要求して導出する。
このアーキテクチャを持つ学習機械は、パラメータやデータの変化に対する表現の連続性など、多くの興味深い特性を享受している、と我々は主張する。
論文 参考訳(メタデータ) (2022-10-24T13:00:15Z) - Toward an Over-parameterized Direct-Fit Model of Visual Perception [5.4823225815317125]
本稿では, 単純細胞と複雑細胞の並列結合機構と逐次結合機構の相違について述べる。
空間分割と合成に抽象化する新たな提案が提案されている。
我々は、$ell_infty$-optimizationに基づいて、動的プログラミング(DP)のような近似近傍探索を実現する方法を示す。
論文 参考訳(メタデータ) (2022-10-07T23:54:30Z) - String-based Molecule Generation via Multi-decoder VAE [56.465033997245776]
可変オートエンコーダ(VAE)による文字列型分子生成の問題点について検討する。
本稿では,そのタスクに対するVAEの性能を改善するための,シンプルで効果的なアイデアを提案する。
実験では,提案するVAEモデルを用いて,領域外分布からサンプルを生成する。
論文 参考訳(メタデータ) (2022-08-23T03:56:30Z) - The Transitive Information Theory and its Application to Deep Generative
Models [0.0]
変分オートエンコーダ(VAE)は2つの反対方向に押される。
既存の方法では、圧縮と再構成の間のレート歪みのトレードオフに問題を絞り込む。
一般化のために学習した表現を再結合する機構とともに,非交叉表現の階層構造を学習するシステムを開発する。
論文 参考訳(メタデータ) (2022-03-09T22:35:02Z) - Discrete-Valued Neural Communication [85.3675647398994]
コンポーネント間で伝達される情報を離散表現に制限することは、有益なボトルネックであることを示す。
個人は「猫」が特定の経験に基づいて何であるかについて異なる理解を持っているが、共有された離散トークンは、個人間のコミュニケーションが内部表現の個人差によって切り離されることを可能にする。
我々は、量子化機構をベクトル量子化変分オートコーダから共有符号ブックによる多頭部離散化に拡張し、離散値ニューラル通信に利用する。
論文 参考訳(メタデータ) (2021-07-06T03:09:25Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。