論文の概要: Towards a Principled Learning Rate Adaptation for Natural Evolution
Strategies
- arxiv url: http://arxiv.org/abs/2112.10680v1
- Date: Mon, 22 Nov 2021 13:20:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-26 13:15:32.715789
- Title: Towards a Principled Learning Rate Adaptation for Natural Evolution
Strategies
- Title(参考訳): 自然進化戦略の原則的学習率適応に向けて
- Authors: Masahiro Nomura, Isao Ono
- Abstract要約: 自然進化戦略(NES)の新しい学習率適応機構を提案する。
提案手法により,比較的容易に最適化できる問題に対して,高い学習率を設定することができる。
実験により, 探索状況に応じて, 提案機構が適切に機能することが実証された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Natural Evolution Strategies (NES) is a promising framework for black-box
continuous optimization problems. NES optimizes the parameters of a probability
distribution based on the estimated natural gradient, and one of the key
parameters affecting the performance is the learning rate. We argue that from
the viewpoint of the natural gradient method, the learning rate should be
determined according to the estimation accuracy of the natural gradient. To do
so, we propose a new learning rate adaptation mechanism for NES. The proposed
mechanism makes it possible to set a high learning rate for problems that are
relatively easy to optimize, which results in speeding up the search. On the
other hand, in problems that are difficult to optimize (e.g., multimodal
functions), the proposed mechanism makes it possible to set a conservative
learning rate when the estimation accuracy of the natural gradient seems to be
low, which results in the robust and stable search. The experimental
evaluations on unimodal and multimodal functions demonstrate that the proposed
mechanism works properly depending on a search situation and is effective over
the existing method, i.e., using the fixed learning rate.
- Abstract(参考訳): Natural Evolution Strategies (NES)は、ブラックボックス連続最適化問題のための有望なフレームワークである。
NESは、推定自然勾配に基づいて確率分布のパラメータを最適化し、性能に影響する重要なパラメータの1つは学習率である。
我々は,自然勾配法の観点から,自然勾配の推定精度に基づいて学習率を決定するべきであると論じる。
そこで我々は,NESの新しい学習率適応機構を提案する。
提案手法により,比較的容易に最適化できる問題に対して高い学習率の設定が可能となり,探索速度が向上する。
一方,最適化が難しい問題(マルチモーダル関数など)では,自然勾配の推定精度が低い場合の保存的学習率の設定が可能となり,ロバストで安定な探索が可能となる。
ユニモーダル関数とマルチモーダル関数の実験的評価により,提案手法は探索状況に応じて適切に動作し,既存の手法,すなわち固定学習率に対して有効であることが示された。
関連論文リスト
- Gradient-Variation Online Learning under Generalized Smoothness [56.38427425920781]
勾配変分オンライン学習は、オンライン関数の勾配の変化とともにスケールする後悔の保証を達成することを目的としている。
ニューラルネットワーク最適化における最近の取り組みは、一般化された滑らかさ条件を示唆し、滑らかさは勾配ノルムと相関する。
ゲームにおける高速収束と拡張逆最適化への応用について述べる。
論文 参考訳(メタデータ) (2024-08-17T02:22:08Z) - Learning rate adaptive stochastic gradient descent optimization methods: numerical simulations for deep learning methods for partial differential equations and convergence analyses [5.052293146674794]
標準降下(SGD)最適化法は、学習率が0に収束しない場合、アダムのような加速および適応SGD最適化法が収束しないことが知られている。
本研究では,経験的推定に基づいて学習率を調整するSGD最適化手法の学習速度適応手法を提案し,検討する。
論文 参考訳(メタデータ) (2024-06-20T14:07:39Z) - Adaptive Robust Learning using Latent Bernoulli Variables [50.223140145910904]
破損したトレーニングセットから学習するための適応的なアプローチを提案する。
我々は,潜伏したベルヌーイ変数を持つ崩壊した非破壊標本を同定した。
結果の問題は変分推論によって解決される。
論文 参考訳(メタデータ) (2023-12-01T13:50:15Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Inlicit Bayesian Meta-learning (iBaML) 法は、学習可能な事前のスコープを広げるだけでなく、関連する不確実性も定量化する。
解析誤差境界は、明示的よりも一般化された暗黙的勾配の精度と効率を示すために確立される。
論文 参考訳(メタデータ) (2023-03-31T02:10:30Z) - Fast and Correct Gradient-Based Optimisation for Probabilistic
Programming via Smoothing [0.0]
本稿では,後部推論を最適化問題とする変分推論の基礎について検討する。
私たちは、測定可能とスムーズな(近似的な)値セマンティクスの両方を言語に与えました。
提案手法は鍵となる競合相手と同様の収束性を持つが,よりシンプルで,高速で,作業正規化分散の桁違いの低減が達成できることを示す。
論文 参考訳(メタデータ) (2023-01-09T15:12:45Z) - Regret-Aware Black-Box Optimization with Natural Gradients,
Trust-Regions and Entropy Control [17.430247457941284]
CMA-ESのような最も成功したブラックボックスは、新しい検索分布を得るために個々のサンプルのランキングを使用する。
これらのアルゴリズムは、通常、検索分布の質の高い平均推定値を生成するが、これらのアルゴリズムは後悔を知らないため、生成したサンプルは品質が劣る可能性がある。
対照的に、Relative Entropy Search (MORE)アルゴリズムは、ランキングを使わずに、期待されるフィットネス機能を直接最適化する。
論文 参考訳(メタデータ) (2022-05-24T16:25:15Z) - A Boosting Approach to Reinforcement Learning [59.46285581748018]
複雑度が状態数に依存しない意思決定プロセスにおける強化学習のための効率的なアルゴリズムについて検討する。
このような弱い学習手法の精度を向上させることができる効率的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-08-22T16:00:45Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
第一次下降法における学習率の適応的選択のための新しいアプローチであるtextit-Meta-Regularizationを提案する。
本手法は,正規化項を追加して目的関数を修正し,共同処理パラメータをキャストする。
論文 参考訳(メタデータ) (2021-04-12T13:13:34Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
レジリエンスとモメンタム(AdaRem)を用いた適応勾配法を提案する。
AdaRemは、過去の1つのパラメータの変化方向が現在の勾配の方向と一致しているかどうかに応じてパラメータワイズ学習率を調整する。
本手法は,学習速度とテスト誤差の観点から,従来の適応学習率に基づくアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-10-21T14:49:00Z) - Automatic, Dynamic, and Nearly Optimal Learning Rate Specification by
Local Quadratic Approximation [7.386152866234369]
ディープラーニングタスクでは、学習率が各イテレーションの更新ステップサイズを決定する。
局所二次近似(LQA)に基づく新しい最適化手法を提案する。
論文 参考訳(メタデータ) (2020-04-07T10:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。