論文の概要: Gradient-Variation Online Learning under Generalized Smoothness
- arxiv url: http://arxiv.org/abs/2408.09074v2
- Date: Sun, 3 Nov 2024 14:34:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 07:07:05.257711
- Title: Gradient-Variation Online Learning under Generalized Smoothness
- Title(参考訳): 一般化スムースネス下でのグラディエント変分オンライン学習
- Authors: Yan-Feng Xie, Peng Zhao, Zhi-Hua Zhou,
- Abstract要約: 勾配変分オンライン学習は、オンライン関数の勾配の変化とともにスケールする後悔の保証を達成することを目的としている。
ニューラルネットワーク最適化における最近の取り組みは、一般化された滑らかさ条件を示唆し、滑らかさは勾配ノルムと相関する。
ゲームにおける高速収束と拡張逆最適化への応用について述べる。
- 参考スコア(独自算出の注目度): 56.38427425920781
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gradient-variation online learning aims to achieve regret guarantees that scale with variations in the gradients of online functions, which has been shown to be crucial for attaining fast convergence in games and robustness in stochastic optimization, hence receiving increased attention. Existing results often require the smoothness condition by imposing a fixed bound on gradient Lipschitzness, which may be unrealistic in practice. Recent efforts in neural network optimization suggest a generalized smoothness condition, allowing smoothness to correlate with gradient norms. In this paper, we systematically study gradient-variation online learning under generalized smoothness. We extend the classic optimistic mirror descent algorithm to derive gradient-variation regret by analyzing stability over the optimization trajectory and exploiting smoothness locally. Then, we explore universal online learning, designing a single algorithm with the optimal gradient-variation regrets for convex and strongly convex functions simultaneously, without requiring prior knowledge of curvature. This algorithm adopts a two-layer structure with a meta-algorithm running over a group of base-learners. To ensure favorable guarantees, we design a new Lipschitz-adaptive meta-algorithm, capable of handling potentially unbounded gradients while ensuring a second-order bound to effectively ensemble the base-learners. Finally, we provide the applications for fast-rate convergence in games and stochastic extended adversarial optimization.
- Abstract(参考訳): グラディエント変分オンライン学習は、ゲームにおける迅速な収束と確率的最適化の堅牢性の達成に不可欠であることが示されているオンライン関数の勾配の変化に伴う後悔の保証を達成することを目的としている。
既存の結果はしばしば、実際には非現実的であるような勾配リプシッツ性に固定境界を課すことによって滑らかさ条件を必要とする。
ニューラルネットワーク最適化における最近の取り組みは、一般化された滑らかさ条件を示唆し、滑らかさは勾配ノルムと相関する。
本稿では,一般化された滑らかさの下での勾配偏差オンライン学習を体系的に研究する。
最適化軌道上の安定性を解析し、局所的に滑らかさを活用することにより、古典的な楽観的なミラー降下アルゴリズムを勾配偏差後悔の導出に拡張する。
そこで我々は,曲線の事前知識を必要とせず,凸関数と強凸関数を同時に用いた1つのアルゴリズムを設計し,普遍的なオンライン学習を探求する。
このアルゴリズムは、ベースラーナーのグループ上で動作するメタアルゴリズムを備えた2層構造を採用する。
そこで我々は,Lipschitz適応メタアルゴリズムを設計し,ベースラーナーを効果的にアンサンブルするための2次バウンドを確保しつつ,潜在的に非有界な勾配を扱えるようにした。
最後に、ゲームにおける高速収束と確率的拡張逆最適化の応用について述べる。
関連論文リスト
- Gradient Methods with Online Scaling [19.218484733179356]
オンライン学習による勾配に基づく手法の収束を加速する枠組みを提案する。
広範に使用される過勾配降下は勾配降下の収束により改善されることを示す。
論文 参考訳(メタデータ) (2024-11-04T05:04:18Z) - Optimal Guarantees for Algorithmic Reproducibility and Gradient
Complexity in Convex Optimization [55.115992622028685]
以前の研究は、一階法はより良い収束率(漸進収束率)をトレードオフする必要があることを示唆している。
最適複雑性と準最適収束保証の両方を、滑らかな凸最小化と滑らかな凸最小化問題に対して達成できることを実証する。
論文 参考訳(メタデータ) (2023-10-26T19:56:52Z) - High Probability Analysis for Non-Convex Stochastic Optimization with
Clipping [13.025261730510847]
勾配クリッピングは重み付きニューラルネットワークを扱う技術である。
ほとんどの理論上の保証は、予測外解析のみを提供し、性能のみを提供する。
我々の分析は、勾配クリッピングによる最適化アルゴリズムの理論的保証について、比較的完全な図を提供している。
論文 参考訳(メタデータ) (2023-07-25T17:36:56Z) - Continuous-Time Meta-Learning with Forward Mode Differentiation [65.26189016950343]
本稿では,勾配ベクトル場の力学に適応するメタ学習アルゴリズムであるContinuous Meta-Learning(COMLN)を紹介する。
学習プロセスをODEとして扱うことは、軌跡の長さが現在連続しているという顕著な利点を提供する。
本稿では,実行時とメモリ使用時の効率を実証的に示すとともに,いくつかの画像分類問題に対して有効性を示す。
論文 参考訳(メタデータ) (2022-03-02T22:35:58Z) - Local Quadratic Convergence of Stochastic Gradient Descent with Adaptive
Step Size [29.15132344744801]
本研究では,行列逆変換などの問題に対して,適応的なステップサイズを持つ勾配勾配の局所収束性を確立する。
これらの一階最適化法は線形あるいは線形収束を実現することができることを示す。
論文 参考訳(メタデータ) (2021-12-30T00:50:30Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
一般的な問題を解決するための適応アルゴリズムのための普遍的な枠組みを設計することが望まれる。
特に,本フレームワークは,非収束的設定支援の下で適応的手法を提供する。
論文 参考訳(メタデータ) (2021-06-15T15:16:28Z) - GTAdam: Gradient Tracking with Adaptive Momentum for Distributed Online
Optimization [4.103281325880475]
本稿では、中央コーディネータを使わずに、局所的な計算と通信によって、オンライン最適化問題を分散的に解決することを目的とした、計算機エージェントのネットワークを扱う。
本稿では,適応運動量推定法(GTAdam)を用いた勾配追従法と,勾配の1次および2次運動量推定法を組み合わせた勾配追従法を提案する。
マルチエージェント学習によるこれらの数値実験では、GTAdamは最先端の分散最適化手法よりも優れている。
論文 参考訳(メタデータ) (2020-09-03T15:20:21Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。