論文の概要: Quantum Superposition of Two Temperatures
- arxiv url: http://arxiv.org/abs/2112.10701v1
- Date: Mon, 20 Dec 2021 17:40:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-04 00:46:10.601178
- Title: Quantum Superposition of Two Temperatures
- Title(参考訳): 2つの温度の量子重ね合わせ
- Authors: Arun Kumar Pati and Avijit Misra
- Abstract要約: 量子系では、2つの温度を重畳することで、高温と低温の両方で観測できる状況に繋がることを示す。
量子熱力学、量子ナノスケールデバイス、量子統計力学に新たな応用が期待できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the classical world, temperature is a measure of how hot or cold a
physical object is. We never find a physical system which can be both hot and
cold at the same time. Here, we show that for a quantum system, it is possible
to have superposition of two temperatures which can lead to a situation that it
can be found both in hot and cold state. We propose a physical mechanism for
how to create a quantum state which is superposition of two temperatures.
Furthermore, we define an operator for the inverse temperature and show that
the thermal state is, in fact, an eigenstate of this operator. The quantum
state which represents superposition of two temperatures is not an eigenstate
of the inverse temperature operator. Our findings can have new applications in
quantum thermodynamics, quantum nano scale devices and quantum statistical
mechanics.
- Abstract(参考訳): 古典的な世界では、温度は物理的な物体がどれだけ高温であるかの尺度である。
暑さと寒さの両方を同時に備える物理的なシステムは決して見つからない。
ここでは、量子系において、2つの温度を重畳することで、高温と寒冷の両方で観測できる状況に繋がることを示す。
2つの温度の重ね合わせである量子状態の作り方に関する物理機構を提案する。
さらに、逆温度の演算子を定義し、熱状態が実のところ、この演算子の固有状態であることを示す。
2つの温度の重畳を表す量子状態は、逆温度演算子の固有状態ではない。
量子熱力学、量子ナノスケールデバイス、量子統計力学に新たな応用が期待できる。
関連論文リスト
- Quantum thermalization of translation-invariant systems at high temperature [0.0]
量子熱化は、閉じた量子系が熱平衡にどのように効果的に到達できるかを記述する。
その普遍性と概念的重要性にもかかわらず、量子熱化の完全な証明は数十年にわたって発見されてきた。
量子熱化は3つの条件を満たす局所相互作用を持つ任意の量子ビット系で発生しなければならないことを証明している。
論文 参考訳(メタデータ) (2024-09-11T18:00:01Z) - Quantum Thermodynamics [0.0]
量子熱力学の理論は、熱、仕事、温度の概念が量子領域にどのように受け継がれるかを研究する。
講義ノートは、小さな量子系の熱力学の紹介を提供する。
論文 参考訳(メタデータ) (2024-06-27T14:28:35Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
量子超伝導プロセッサ上での部分的および無限温度熱化を観察する。
収束は、完全に混合された(温度が一定でない)状態ではなく、観測可能な状態のブロック対角状態に傾向を示す。
論文 参考訳(メタデータ) (2022-11-14T15:18:11Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
重ね合わせ原理は量子力学の最も基本的な原理の1つである。
そこで本研究では,Schr"odinger cat state of motionにおいて,有効質量16.2マイクログラムの機械共振器を作製した。
重ね合わせの大きさと位相の制御を示し、これらの状態のデコヒーレンスダイナミクスについて検討する。
論文 参考訳(メタデータ) (2022-11-01T13:29:44Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
本研究では, 量子系が熱浴と相互作用する際の可視性に関する量子一般化を実験的に提案する。
微視的可逆性の原理に対する量子修正が低温限界において重要であることを検証した。
論文 参考訳(メタデータ) (2022-05-26T00:25:29Z) - Operational definition of the temperature of a quantum state [0.0]
我々は、量子系が熱環境を冷却または加熱する能力に有効な2つの温度を定義した。
我々は、システムと熱環境の間の熱交換が量子参照フレームによって補助される、より洗練されたシナリオを考える。
これは「コヒーレントな量子コヒーレンス」の効果をもたらし、コヒーレントな触媒を用いることで系内の量子エネルギーコヒーレンスを利用することができる。
論文 参考訳(メタデータ) (2022-04-29T18:00:13Z) - Operational models of temperature superpositions [0.09782246441301058]
量子系と熱浴は相互作用を通じて熱平衡に達する。
局所化量子系は、局所温度が変化する浴槽でどのように加熱されるか?
温度重畳の概念が生じる2つのシナリオを定式化する。
論文 参考訳(メタデータ) (2021-12-15T03:36:46Z) - Taking the temperature of a pure quantum state [55.41644538483948]
温度は一見単純な概念で、量子物理学研究の最前線ではまだ深い疑問が浮かび上がっています。
本稿では,量子干渉による純状態の温度測定手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
常温環境に埋め込まれた非エルミート量子系を記述する理論を提案する。
確率損失と熱ゆらぎの複合作用は分子接合の量子輸送を補助する。
論文 参考訳(メタデータ) (2021-01-21T14:33:34Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
有限次元量子系の温度に対する一般的な表現は熱力学の議論から導かれる。
2次元および3次元量子系の温度の比例式を示す。
論文 参考訳(メタデータ) (2020-05-01T07:47:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。