Learning Spatio-Temporal Specifications for Dynamical Systems
- URL: http://arxiv.org/abs/2112.10714v1
- Date: Mon, 20 Dec 2021 18:03:01 GMT
- Title: Learning Spatio-Temporal Specifications for Dynamical Systems
- Authors: Suhail Alsalehi, Erfan Aasi, Ron Weiss, Calin Belta
- Abstract summary: We propose a framework for learning-temporal (ST properties) as logic specifications from data.
We introduce SVM-STL, an extension of Signal Signal Temporal Logic (STL), capable of mitigating temporal and spatial properties of a wide range of dynamical systems.
Our framework utilizes machine learning techniques to learn SVM-STL specifications from system executions given by sequences of spatial patterns.
- Score: 0.757024681220677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning dynamical systems properties from data provides important insights
that help us understand such systems and mitigate undesired outcomes. In this
work, we propose a framework for learning spatio-temporal (ST) properties as
formal logic specifications from data. We introduce SVM-STL, an extension of
Signal Signal Temporal Logic (STL), capable of specifying spatial and temporal
properties of a wide range of dynamical systems that exhibit time-varying
spatial patterns. Our framework utilizes machine learning techniques to learn
SVM-STL specifications from system executions given by sequences of spatial
patterns. We present methods to deal with both labeled and unlabeled data. In
addition, given system requirements in the form of SVM-STL specifications, we
provide an approach for parameter synthesis to find parameters that maximize
the satisfaction of such specifications. Our learning framework and parameter
synthesis approach are showcased in an example of a reaction-diffusion system.
Related papers
- Retrieval-Augmented Mining of Temporal Logic Specifications from Data [0.46040036610482665]
This work addresses the task of learning STL requirements from observed behaviors in a data-driven manner.
We present a novel framework that combines Bayesian Optimization (BO) and Information Retrieval (IR) techniques to simultaneously learn both the structure and the parameters of STL formulae.
arXiv Detail & Related papers (2024-05-23T09:29:00Z) - HOPE for a Robust Parameterization of Long-memory State Space Models [51.66430224089725]
State-space models (SSMs) that utilize linear, time-invariant (LTI) systems are known for their effectiveness in learning long sequences.
We develop a new parameterization scheme, called HOPE, for LTI systems that utilize Markov parameters within Hankel operators.
Our new parameterization endows the SSM with non-decaying memory within a fixed time window, which is empirically corroborated by a sequential CIFAR-10 task with padded noise.
arXiv Detail & Related papers (2024-05-22T20:20:14Z) - An Attention Long Short-Term Memory based system for automatic
classification of speech intelligibility [2.404313022991873]
This work is focused on the development of an automatic non-intrusive system for predicting the speech intelligibility level.
The main contribution of our research on this topic is the use of Long Short-Term Memory networks with log-mel spectrograms as input features.
The proposed models are evaluated with the UA-Speech database that contains dysarthric speech with different degrees of severity.
arXiv Detail & Related papers (2024-02-05T10:03:28Z) - SimLM: Can Language Models Infer Parameters of Physical Systems? [56.38608628187024]
We investigate the performance of Large Language Models (LLMs) at performing parameter inference in the context of physical systems.
Our experiments suggest that they are not inherently suited to this task, even for simple systems.
We propose a promising direction of exploration, which involves the use of physical simulators to augment the context of LLMs.
arXiv Detail & Related papers (2023-12-21T12:05:19Z) - InVAErt networks: a data-driven framework for model synthesis and
identifiability analysis [0.0]
inVAErt is a framework for data-driven analysis and synthesis of physical systems.
It uses a deterministic decoder to represent the forward and inverse maps, a normalizing flow to capture the probabilistic distribution of system outputs, and a variational encoder to learn a compact latent representation for the lack of bijectivity between inputs and outputs.
arXiv Detail & Related papers (2023-07-24T07:58:18Z) - Deep Learning of Dynamical System Parameters from Return Maps as Images [0.0]
We present a novel approach to system identification using deep learning techniques.
We use a supervised learning approach for estimating the parameters of discrete and continuous-time dynamical systems.
arXiv Detail & Related papers (2023-06-20T03:23:32Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Mining Interpretable Spatio-temporal Logic Properties for Spatially
Distributed Systems [0.7585262843303869]
We propose the first set of algorithms for unsupervised learning for temporal data.
We show that our method generates STREL formulas of bounded description using a complexity decision-tree approach.
We demonstrate the effectiveness of our approach on case studies from diverse domains such as urban transportation, green infrastructure, and air quality monitoring.
arXiv Detail & Related papers (2021-06-16T04:51:26Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
We propose a novel and fully data driven control scheme which relies on machine learning (ML)
Exploiting recently developed ML-based prediction capabilities of complex systems, we demonstrate that nonlinear systems can be forced to stay in arbitrary dynamical target states coming from any initial state.
Having this highly flexible control scheme with little demands on the amount of required data on hand, we briefly discuss possible applications that range from engineering to medicine.
arXiv Detail & Related papers (2021-02-23T16:58:26Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.