InVAErt networks: a data-driven framework for model synthesis and
identifiability analysis
- URL: http://arxiv.org/abs/2307.12586v2
- Date: Mon, 11 Sep 2023 17:08:05 GMT
- Title: InVAErt networks: a data-driven framework for model synthesis and
identifiability analysis
- Authors: Guoxiang Grayson Tong, Carlos A. Sing Long, Daniele E. Schiavazzi
- Abstract summary: inVAErt is a framework for data-driven analysis and synthesis of physical systems.
It uses a deterministic decoder to represent the forward and inverse maps, a normalizing flow to capture the probabilistic distribution of system outputs, and a variational encoder to learn a compact latent representation for the lack of bijectivity between inputs and outputs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Use of generative models and deep learning for physics-based systems is
currently dominated by the task of emulation. However, the remarkable
flexibility offered by data-driven architectures would suggest to extend this
representation to other aspects of system synthesis including model inversion
and identifiability. We introduce inVAErt (pronounced "invert") networks, a
comprehensive framework for data-driven analysis and synthesis of parametric
physical systems which uses a deterministic encoder and decoder to represent
the forward and inverse solution maps, a normalizing flow to capture the
probabilistic distribution of system outputs, and a variational encoder
designed to learn a compact latent representation for the lack of bijectivity
between inputs and outputs. We formally investigate the selection of penalty
coefficients in the loss function and strategies for latent space sampling,
since we find that these significantly affect both training and testing
performance. We validate our framework through extensive numerical examples,
including simple linear, nonlinear, and periodic maps, dynamical systems, and
spatio-temporal PDEs.
Related papers
- InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models [0.0]
In this study, we use inVAErt networks, a neural network-based, data-driven framework for enhanced digital twin analysis of stiff dynamical systems.
We demonstrate the flexibility and effectiveness of inVAErt networks in the context of physiological inversion of a six-compartment lumped parameter hemodynamic model from synthetic data to real data with missing components.
arXiv Detail & Related papers (2024-08-15T17:07:40Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Interpretable reduced-order modeling with time-scale separation [9.889399863931676]
Partial Differential Equations (PDEs) with high dimensionality are commonly encountered in computational physics and engineering.
We propose a data-driven scheme that automates the identification of the time-scales involved.
We show that this data-driven scheme can automatically learn the independent processes that decompose a system of linear ODEs.
arXiv Detail & Related papers (2023-03-03T19:23:59Z) - $Φ$-DVAE: Physics-Informed Dynamical Variational Autoencoders for Unstructured Data Assimilation [3.2873782624127843]
We develop a physics-informed dynamical variational autoencoder ($Phi$-DVAE) to embed diverse data streams into time-evolving physical systems.
Our approach combines a standard, possibly nonlinear, filter for the latent state-space model and a VAE, to assimilate the unstructured data into the latent dynamical system.
A variational Bayesian framework is used for the joint estimation of the encoding, latent states, and unknown system parameters.
arXiv Detail & Related papers (2022-09-30T17:34:48Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.