An Inference Approach To Question Answering Over Knowledge Graphs
- URL: http://arxiv.org/abs/2112.11070v1
- Date: Tue, 21 Dec 2021 10:07:55 GMT
- Title: An Inference Approach To Question Answering Over Knowledge Graphs
- Authors: Aayushee Gupta, K.M. Annervaz, Ambedkar Dukkipati, Shubhashis Sengupta
- Abstract summary: We convert the problem of natural language querying over knowledge graphs to an inference problem over premise-hypothesis pairs.
Our method achieves over 90% accuracy on MetaQA dataset, beating the existing state-of-the-art.
Our approach does not require large domain-specific training data for querying on new knowledge graphs from different domains.
- Score: 7.989723691844202
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Knowledge Graphs (KG) act as a great tool for holding distilled information
from large natural language text corpora. The problem of natural language
querying over knowledge graphs is essential for the human consumption of this
information. This problem is typically addressed by converting the natural
language query to a structured query and then firing the structured query on
the KG. Direct answering models over knowledge graphs in literature are very
few. The query conversion models and direct models both require specific
training data pertaining to the domain of the knowledge graph. In this work, we
convert the problem of natural language querying over knowledge graphs to an
inference problem over premise-hypothesis pairs. Using trained deep learning
models for the converted proxy inferencing problem, we provide the solution for
the original natural language querying problem. Our method achieves over 90%
accuracy on MetaQA dataset, beating the existing state-of-the-art. We also
propose a model for inferencing called Hierarchical Recurrent Path
Encoder(HRPE). The inferencing models can be fine-tuned to be used across
domains with less training data. Our approach does not require large
domain-specific training data for querying on new knowledge graphs from
different domains.
Related papers
- Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
We model the subgraph retrieval task as a conditional generation task handled by small language models.
Our base generative subgraph retrieval model, consisting of only 220M parameters, competitive retrieval performance compared to state-of-the-art models.
Our largest 3B model, when plugged with an LLM reader, sets new SOTA end-to-end performance on both the WebQSP and CWQ benchmarks.
arXiv Detail & Related papers (2024-10-08T15:22:36Z) - Konstruktor: A Strong Baseline for Simple Knowledge Graph Question Answering [60.6042489577575]
We introduce Konstruktor - an efficient and robust approach that breaks down the problem into three steps.
Our approach integrates language models and knowledge graphs, exploiting the power of the former and the interpretability of the latter.
We show that for relation detection, the most challenging step of the workflow, a combination of relation classification/generation and ranking outperforms other methods.
arXiv Detail & Related papers (2024-09-24T09:19:11Z) - iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models [0.7165255458140439]
iText2KG is a method for incremental, topic-independent Knowledge Graph construction without post-processing.
Our method demonstrates superior performance compared to baseline methods across three scenarios.
arXiv Detail & Related papers (2024-09-05T06:49:14Z) - Integrating Large Language Models with Graph-based Reasoning for Conversational Question Answering [58.17090503446995]
We focus on a conversational question answering task which combines the challenges of understanding questions in context and reasoning over evidence gathered from heterogeneous sources like text, knowledge graphs, tables, and infoboxes.
Our method utilizes a graph structured representation to aggregate information about a question and its context.
arXiv Detail & Related papers (2024-06-14T13:28:03Z) - GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding [39.67113788660731]
We introduce a framework for developing Graph-aligned LAnguage Models (GLaM)
We demonstrate that grounding the models in specific graph-based knowledge expands the models' capacity for structure-based reasoning.
arXiv Detail & Related papers (2024-02-09T19:53:29Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
We propose a subgraph-aware self-attention mechanism to imitate the GNN for performing structured reasoning.
We also adopt an adaptation tuning strategy to adapt the model parameters with 20,000 subgraphs with synthesized questions.
Experiments show that ReasoningLM surpasses state-of-the-art models by a large margin, even with fewer updated parameters and less training data.
arXiv Detail & Related papers (2023-12-30T07:18:54Z) - GraphextQA: A Benchmark for Evaluating Graph-Enhanced Large Language
Models [33.56759621666477]
We present a benchmark dataset for evaluating the integration of graph knowledge into language models.
The proposed dataset is designed to evaluate graph-language models' ability to understand graphs and make use of it for answer generation.
We perform experiments with language-only models and the proposed graph-language model to validate the usefulness of the paired graphs and to demonstrate the difficulty of the task.
arXiv Detail & Related papers (2023-10-12T16:46:58Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - VANiLLa : Verbalized Answers in Natural Language at Large Scale [2.9098477555578333]
This dataset consists of over 100k simple questions adapted from the CSQA and SimpleQuestionsWikidata datasets.
The answer sentences in this dataset are syntactically and semantically closer to the question than to the triple fact.
arXiv Detail & Related papers (2021-05-24T16:57:54Z) - A Simple Approach to Case-Based Reasoning in Knowledge Bases [56.661396189466664]
We present a surprisingly simple yet accurate approach to reasoning in knowledge graphs (KGs) that requires emphno training, and is reminiscent of case-based reasoning in classical artificial intelligence (AI)
Consider the task of finding a target entity given a source entity and a binary relation.
Our non-parametric approach derives crisp logical rules for each query by finding multiple textitgraph path patterns that connect similar source entities through the given relation.
arXiv Detail & Related papers (2020-06-25T06:28:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.