iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models
- URL: http://arxiv.org/abs/2409.03284v1
- Date: Thu, 5 Sep 2024 06:49:14 GMT
- Title: iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models
- Authors: Yassir Lairgi, Ludovic Moncla, Rémy Cazabet, Khalid Benabdeslem, Pierre Cléau,
- Abstract summary: iText2KG is a method for incremental, topic-independent Knowledge Graph construction without post-processing.
Our method demonstrates superior performance compared to baseline methods across three scenarios.
- Score: 0.7165255458140439
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most available data is unstructured, making it challenging to access valuable information. Automatically building Knowledge Graphs (KGs) is crucial for structuring data and making it accessible, allowing users to search for information effectively. KGs also facilitate insights, inference, and reasoning. Traditional NLP methods, such as named entity recognition and relation extraction, are key in information retrieval but face limitations, including the use of predefined entity types and the need for supervised learning. Current research leverages large language models' capabilities, such as zero- or few-shot learning. However, unresolved and semantically duplicated entities and relations still pose challenges, leading to inconsistent graphs and requiring extensive post-processing. Additionally, most approaches are topic-dependent. In this paper, we propose iText2KG, a method for incremental, topic-independent KG construction without post-processing. This plug-and-play, zero-shot method is applicable across a wide range of KG construction scenarios and comprises four modules: Document Distiller, Incremental Entity Extractor, Incremental Relation Extractor, and Graph Integrator and Visualization. Our method demonstrates superior performance compared to baseline methods across three scenarios: converting scientific papers to graphs, websites to graphs, and CVs to graphs.
Related papers
- Can LLMs be Good Graph Judger for Knowledge Graph Construction? [33.958327252291]
In this paper, we propose GraphJudger, a knowledge graph construction framework to address the aforementioned challenges.
We introduce three innovative modules in our method, which are entity-centric iterative text denoising, knowledge aware instruction tuning and graph judgement.
Experiments conducted on two general text-graph pair datasets and one domain-specific text-graph pair dataset show superior performances compared to baseline methods.
arXiv Detail & Related papers (2024-11-26T12:46:57Z) - Konstruktor: A Strong Baseline for Simple Knowledge Graph Question Answering [60.6042489577575]
We introduce Konstruktor - an efficient and robust approach that breaks down the problem into three steps.
Our approach integrates language models and knowledge graphs, exploiting the power of the former and the interpretability of the latter.
We show that for relation detection, the most challenging step of the workflow, a combination of relation classification/generation and ranking outperforms other methods.
arXiv Detail & Related papers (2024-09-24T09:19:11Z) - GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding [39.67113788660731]
We introduce a framework for developing Graph-aligned LAnguage Models (GLaM)
We demonstrate that grounding the models in specific graph-based knowledge expands the models' capacity for structure-based reasoning.
arXiv Detail & Related papers (2024-02-09T19:53:29Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
We propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP) for data-efficient knowledge graph construction.
RAP can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample.
arXiv Detail & Related papers (2022-10-19T16:40:28Z) - EventNarrative: A large-scale Event-centric Dataset for Knowledge
Graph-to-Text Generation [8.216976747904726]
EventNarrative consists of approximately 230,000 graphs and their corresponding natural language text, 6 times larger than the current largest parallel dataset.
Our aim is two-fold: help break new ground in event-centric research where data is lacking, and to give researchers a well-defined, large-scale dataset.
arXiv Detail & Related papers (2021-10-30T15:39:20Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.