論文の概要: Generalizable Cross-modality Medical Image Segmentation via Style
Augmentation and Dual Normalization
- arxiv url: http://arxiv.org/abs/2112.11177v1
- Date: Tue, 21 Dec 2021 13:18:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-22 14:11:38.082088
- Title: Generalizable Cross-modality Medical Image Segmentation via Style
Augmentation and Dual Normalization
- Title(参考訳): スタイル拡張とデュアル正規化による一般化可能なクロスモーダル医用画像分割
- Authors: Ziqi Zhou, Lei Qi, Xin Yang, Dong Ni, Yinghuan Shi
- Abstract要約: 本稿では,拡張されたソース類似画像とソース類似画像を利用する新しいデュアル正規化モジュールを提案する。
我々の手法は、他の最先端の領域一般化手法よりも優れている。
- 参考スコア(独自算出の注目度): 29.470385509955687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For medical image segmentation, imagine if a model was only trained using MR
images in source domain, how about its performance to directly segment CT
images in target domain? This setting, namely generalizable cross-modality
segmentation, owning its clinical potential, is much more challenging than
other related settings, e.g., domain adaptation. To achieve this goal, we in
this paper propose a novel dual-normalization module by leveraging the
augmented source-similar and source-dissimilar images during our generalizable
segmentation. To be specific, given a single source domain, aiming to simulate
the possible appearance change in unseen target domains, we first utilize a
nonlinear transformation to augment source-similar and source-dissimilar
images. Then, to sufficiently exploit these two types of augmentations, our
proposed dual-normalization based model employs a shared backbone yet
independent batch normalization layer for separate normalization. Afterwards,
we put forward a style-based selection scheme to automatically choose the
appropriate path in the test stage. Extensive experiments on three publicly
available datasets, i.e., BraTS, Cross-Modality Cardiac and Abdominal
Multi-Organ dataset, have demonstrated that our method outperforms other
state-of-the-art domain generalization methods.
- Abstract(参考訳): 医用画像のセグメンテーションでは、モデルがソース領域のMR画像のみを使用して訓練された場合、ターゲット領域のCT画像を直接セグメンテーションする性能はどうだろうか?
この設定、すなわち、その臨床的ポテンシャルを所有する一般化可能なクロスモダリティセグメンテーションは、ドメイン適応のような他の関連する設定よりもはるかに困難である。
この目的を達成するために,一般化可能なセグメンテーションにおいて,拡張されたソース類似画像とソース類似画像を利用する新しい二重正規化モジュールを提案する。
具体的には、単一のソースドメインが与えられた場合、対象領域が見当たらない場合の外観変化をシミュレートするために、まず、ソース類似およびソース異種画像の拡張に非線形変換を利用する。
次に,これら2種類の拡張を十分に活用するために,提案する2重正規化モデルでは,個別正規化のために共有バックボーンと独立なバッチ正規化層を用いる。
その後,テストステージの適切なパスを自動的に選択するためのスタイルベース選択スキームを策定した。
BraTS,Cross-Modality Cardiac,Abdominal Multi-Organの3つの公開データセットに対する大規模な実験により,本手法が他の最先端ドメイン一般化手法よりも優れていることが示された。
関連論文リスト
- Generalizable Single-Source Cross-modality Medical Image Segmentation via Invariant Causal Mechanisms [16.699205051836657]
単一ソースドメインの一般化は、見当たらないターゲットドメインをうまく一般化できる単一のソースドメインからモデルを学ぶことを目的としている。
これはコンピュータビジョンにおいて重要なタスクであり、特にドメインシフトが一般的である医療画像に関係している。
我々は,領域不変表現の学習に関する因果性に着想を得た理論的洞察と拡散に基づく拡張の最近の進歩を組み合わせることにより,多様な画像モダリティの一般化を向上する。
論文 参考訳(メタデータ) (2024-11-07T22:35:17Z) - DG-TTA: Out-of-domain medical image segmentation through Domain Generalization and Test-Time Adaptation [43.842694540544194]
本稿では、ドメインの一般化とテスト時間適応を組み合わせることで、未確認対象領域で事前学習したモデルを再利用するための非常に効果的なアプローチを提案する。
本手法は,事前訓練した全身CTモデルと組み合わせることで,MR画像を高精度に分割できることを実証する。
論文 参考訳(メタデータ) (2023-12-11T10:26:21Z) - A Simple and Robust Framework for Cross-Modality Medical Image
Segmentation applied to Vision Transformers [0.0]
単一条件モデルを用いて複数モードの公平な画像分割を実現するための簡単なフレームワークを提案する。
本研究の枠組みは,マルチモーダル全心条件課題において,他のモダリティセグメンテーション手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-09T09:51:44Z) - Federated Domain Generalization for Image Recognition via Cross-Client
Style Transfer [60.70102634957392]
ドメイン一般化(Domain Generalization, DG)は、画像認識においてホットなトピックであり、目に見えないドメインでうまく機能する一般的なモデルを訓練することを目的としている。
本稿では,データサンプルを交換することなく,クロスクライアント型転送(CCST)による画像認識のための新しい領域一般化手法を提案する。
本手法は2つのDGベンチマーク(PACS, OfficeHome)とFL設定における大規模医用画像データセット(Camelyon17)において,最近のSOTA DG法より優れている。
論文 参考訳(メタデータ) (2022-10-03T13:15:55Z) - Generalizable Medical Image Segmentation via Random Amplitude Mixup and
Domain-Specific Image Restoration [17.507951655445652]
本稿では,新しい医用画像分割法を提案する。
具体的には、セグメント化モデルと自己超越ドメイン固有の画像復元モジュールを組み合わせることで、マルチタスクパラダイムとしてアプローチを設計する。
医用画像における2つの一般化可能なセグメンテーションベンチマークにおいて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-08-08T03:56:20Z) - Single-domain Generalization in Medical Image Segmentation via Test-time
Adaptation from Shape Dictionary [64.5632303184502]
ドメインの一般化は通常、モデル学習のために複数のソースドメインからのデータを必要とする。
本稿では,1つのソースドメインのみで最悪のシナリオ下でモデルを学習し,異なる未確認対象ドメインに直接一般化する,重要な単一ドメインの一般化問題について考察する。
本稿では,領域間で不変なセグメンテーションのセグメンテーション先情報を抽出し,統合する医用画像セグメンテーションにおいて,この問題に対処する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-06-29T08:46:27Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - DoFE: Domain-oriented Feature Embedding for Generalizable Fundus Image
Segmentation on Unseen Datasets [96.92018649136217]
対象ドメインに対するCNNの一般化能力を向上させるために,新しいドメイン指向特徴埋め込み(DoFE)フレームワークを提案する。
私たちのDoFEフレームワークは、マルチソースドメインから学んだ追加のドメイン事前知識で、画像機能を動的に強化します。
本フレームワークは、未確認データセットのセグメンテーション結果を満足して生成し、他の領域の一般化やネットワークの正規化手法を超越する。
論文 参考訳(メタデータ) (2020-10-13T07:28:39Z) - Realistic Image Normalization for Multi-Domain Segmentation [7.856339385917824]
本稿では,複数のデータセットにまたがる共通正規化関数を学習することで,従来の画像正規化手法を再検討する。
複数のデータセットを共同で正規化することにより、一貫した正規化イメージと改善されたイメージセグメンテーションが得られる。
また、複数の画像領域から学習する場合に利用可能なサンプル数を増やすことで、データの可用性を向上させることができる。
論文 参考訳(メタデータ) (2020-09-29T13:57:04Z) - TriGAN: Image-to-Image Translation for Multi-Source Domain Adaptation [82.52514546441247]
本稿では,ジェネレーティブ・アドバイサル・ネットワークに基づくマルチソース・ドメイン適応(MSDA)の最初のアプローチを提案する。
本手法は,画像の出現がドメイン,スタイル,内容の3つの要因に依存するという観察に着想を得たものである。
提案手法はMSDAベンチマークを用いて試行し,最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-04-19T05:07:22Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
我々は、Synergistic Image and Feature Alignment (SIFA)と名付けられた新しい教師なしドメイン適応フレームワークを提案する。
提案するSIFAは、画像と特徴の両方の観点から、ドメインの相乗的アライメントを行う。
2つの異なるタスクに対する実験結果から,SIFA法は未ラベル対象画像のセグメンテーション性能を向上させるのに有効であることが示された。
論文 参考訳(メタデータ) (2020-02-06T13:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。