論文の概要: Federated Domain Generalization for Image Recognition via Cross-Client
Style Transfer
- arxiv url: http://arxiv.org/abs/2210.00912v1
- Date: Mon, 3 Oct 2022 13:15:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 15:52:09.307247
- Title: Federated Domain Generalization for Image Recognition via Cross-Client
Style Transfer
- Title(参考訳): クロスクライアント方式転送による画像認識のためのフェデレーションドメイン一般化
- Authors: Junming Chen and Meirui Jiang and Qi Dou and Qifeng Chen
- Abstract要約: ドメイン一般化(Domain Generalization, DG)は、画像認識においてホットなトピックであり、目に見えないドメインでうまく機能する一般的なモデルを訓練することを目的としている。
本稿では,データサンプルを交換することなく,クロスクライアント型転送(CCST)による画像認識のための新しい領域一般化手法を提案する。
本手法は2つのDGベンチマーク(PACS, OfficeHome)とFL設定における大規模医用画像データセット(Camelyon17)において,最近のSOTA DG法より優れている。
- 参考スコア(独自算出の注目度): 60.70102634957392
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Domain generalization (DG) has been a hot topic in image recognition, with a
goal to train a general model that can perform well on unseen domains.
Recently, federated learning (FL), an emerging machine learning paradigm to
train a global model from multiple decentralized clients without compromising
data privacy, brings new challenges, also new possibilities, to DG. In the FL
scenario, many existing state-of-the-art (SOTA) DG methods become ineffective,
because they require the centralization of data from different domains during
training. In this paper, we propose a novel domain generalization method for
image recognition under federated learning through cross-client style transfer
(CCST) without exchanging data samples. Our CCST method can lead to more
uniform distributions of source clients, and thus make each local model learn
to fit the image styles of all the clients to avoid the different model biases.
Two types of style (single image style and overall domain style) with
corresponding mechanisms are proposed to be chosen according to different
scenarios. Our style representation is exceptionally lightweight and can hardly
be used for the reconstruction of the dataset. The level of diversity is also
flexible to be controlled with a hyper-parameter. Our method outperforms recent
SOTA DG methods on two DG benchmarks (PACS, OfficeHome) and a large-scale
medical image dataset (Camelyon17) in the FL setting. Last but not least, our
method is orthogonal to many classic DG methods, achieving additive performance
by combined utilization.
- Abstract(参考訳): ドメイン一般化(Domain Generalization, DG)は、画像認識においてホットなトピックであり、目に見えないドメインでうまく機能する一般的なモデルを訓練することを目的としている。
最近、データプライバシを損なうことなく複数の分散クライアントからグローバルモデルをトレーニングする、新たな機械学習パラダイムであるフェデレーション・ラーニング(FL)が、DGに新たな課題、新たな可能性をもたらしている。
FLシナリオでは、訓練中に異なるドメインからのデータを集中化する必要があるため、既存のSOTA(State-of-the-art)DGメソッドは非効率になる。
本稿では,データサンプルを交換することなく,クロスクライアント型転送(CCST)によるフェデレーション学習による画像認識のための新しい領域一般化手法を提案する。
ccst法は、ソースクライアントのより均一な分布につながり、各ローカルモデルが、異なるモデルのバイアスを避けるために、すべてのクライアントのイメージスタイルに適合するように学習させます。
異なるシナリオに応じて、対応するメカニズムを持つ2種類のスタイル(単一のイメージスタイルと全体ドメインスタイル)を選択することを提案する。
私たちのスタイル表現は極めて軽量で、データセットの再構築にはほとんど使えません。
多様性のレベルは、ハイパーパラメータで制御できる柔軟性もある。
本手法は2つのDGベンチマーク(PACS, OfficeHome)とFL設定における大規模医用画像データセット(Camelyon17)において,最近のSOTA DG法より優れている。
最後に,本手法は多くの古典的DG法に直交し,複合利用による付加性能を実現する。
関連論文リスト
- OneDiff: A Generalist Model for Image Difference Captioning [5.71214984158106]
画像差分キャプション(IDC)は、近縁な画像間の変化を正確に記述するために重要である。
OneDiffは、堅牢な視覚言語モデルアーキテクチャを利用する新しいジェネラリストアプローチである。
OneDiffは、既存の最先端モデルを精度と適応性で一貫して上回っている。
論文 参考訳(メタデータ) (2024-07-08T06:14:37Z) - FDS: Feedback-guided Domain Synthesis with Multi-Source Conditional Diffusion Models for Domain Generalization [19.0284321951354]
ドメイン一般化技術は、トレーニング中に新しいデータ分布をシミュレートすることで、モデルロバスト性を高めることを目的としている。
本稿では、拡散モデルを用いて新しい擬似ドメインを合成するFDS、フィードバック誘導ドメイン合成法を提案する。
本手法は, 領域一般化性能のベンチマークを, 様々な課題のあるデータセットに分けて設定することを示す。
論文 参考訳(メタデータ) (2024-07-04T02:45:29Z) - Grounding Stylistic Domain Generalization with Quantitative Domain Shift Measures and Synthetic Scene Images [63.58800688320182]
ドメインの一般化は機械学習において難しい課題である。
現在の方法論は、スタイリスティック領域におけるシフトに関する定量的な理解を欠いている。
これらのリスクに対処する新しいDGパラダイムを導入する。
論文 参考訳(メタデータ) (2024-05-24T22:13:31Z) - DG-TTA: Out-of-domain medical image segmentation through Domain Generalization and Test-Time Adaptation [43.842694540544194]
本稿では、ドメインの一般化とテスト時間適応を組み合わせることで、未確認対象領域で事前学習したモデルを再利用するための非常に効果的なアプローチを提案する。
本手法は,事前訓練した全身CTモデルと組み合わせることで,MR画像を高精度に分割できることを実証する。
論文 参考訳(メタデータ) (2023-12-11T10:26:21Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Domain Adaptive and Generalizable Network Architectures and Training
Strategies for Semantic Image Segmentation [108.33885637197614]
教師なしドメイン適応(UDA)とドメイン一般化(DG)により、ソースドメインでトレーニングされた機械学習モデルは、ラベルなしまたは目に見えないターゲットドメインでうまく機能する。
UDA&DGのマルチレゾリューション・フレームワークであるHRDAを提案する。このフレームワークは、細かなセグメンテーションの詳細を保存するための小さな高分解能作物の強度と、学習されたスケールの注意を伴って長距離のコンテキスト依存を捕捉する大規模な低分解能作物の強度を組み合わせたものである。
論文 参考訳(メタデータ) (2023-04-26T15:18:45Z) - Style-Hallucinated Dual Consistency Learning: A Unified Framework for
Visual Domain Generalization [113.03189252044773]
本稿では,様々な視覚的タスクにおけるドメインシフトを処理するための統合フレームワークであるStyle-HAllucinated Dual consistEncy Learning (SHADE)を提案する。
我々の汎用SHADEは、画像分類、セマンティックセグメンテーション、オブジェクト検出など、様々な視覚認識タスクにおける一般化を著しく向上させることができる。
論文 参考訳(メタデータ) (2022-12-18T11:42:51Z) - WEDGE: Web-Image Assisted Domain Generalization for Semantic
Segmentation [72.88657378658549]
本稿では,Web画像の多様性を一般化可能なセマンティックセグメンテーションに活用したWEb画像支援ドメインゲネラライゼーション手法を提案する。
また,ウェブクローラー画像のスタイルをトレーニング中のトレーニング画像に注入する手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T05:19:58Z) - Learning to Diversify for Single Domain Generalization [46.35670520201863]
ドメイン一般化(DG)は、複数のソース(トレーニング)ドメインで訓練されたモデルを、分散的に異なるターゲット(テスト)ドメインに一般化することを目的としている。
本稿では、より現実的で困難なシナリオ、すなわちSingle-DG(Single-DG)について考察する。
このシナリオでは、限られた多様性は、目に見えないターゲット領域上のモデル一般化を危険にさらす可能性がある。
そこで本研究では,ソースコードに相補的な多種多様な分布の画像を合成することにより,モデルの一般化能力を高めるためのスタイル補完モジュールを提案する。
論文 参考訳(メタデータ) (2021-08-26T12:04:32Z) - Feature-based Style Randomization for Domain Generalization [27.15070576861912]
ドメイン一般化(Domain Generalization、DG)は、まず複数のソースドメイン上のジェネリックモデルを学習し、その後、追加の適応なしに任意の未確認ターゲットドメインに直接一般化することを目的としている。
本稿では,機能レベルの拡張を実現するために,シンプルだが効果的な特徴ベーススタイルのランダム化モジュールを開発する。
既存の画像レベルの拡張と比較して、我々の特徴レベルの拡張は、よりゴール指向でサンプルの多様性のある方法を好む。
論文 参考訳(メタデータ) (2021-06-06T16:34:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。