Contrast and Generation Make BART a Good Dialogue Emotion Recognizer
- URL: http://arxiv.org/abs/2112.11202v1
- Date: Tue, 21 Dec 2021 13:38:00 GMT
- Title: Contrast and Generation Make BART a Good Dialogue Emotion Recognizer
- Authors: Shimin Li, Hang Yan, Xipeng Qiu
- Abstract summary: Long-range contextual emotional relationships with speaker dependency play a crucial part in dialogue emotion recognition.
We adopt supervised contrastive learning to make different emotions mutually exclusive to identify similar emotions better.
We utilize an auxiliary response generation task to enhance the model's ability of handling context information.
- Score: 38.18867570050835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In dialogue systems, utterances with similar semantics may have distinctive
emotions under different contexts. Therefore, modeling long-range contextual
emotional relationships with speaker dependency plays a crucial part in
dialogue emotion recognition. Meanwhile, distinguishing the different emotion
categories is non-trivial since they usually have semantically similar
sentiments. To this end, we adopt supervised contrastive learning to make
different emotions mutually exclusive to identify similar emotions better.
Meanwhile, we utilize an auxiliary response generation task to enhance the
model's ability of handling context information, thereby forcing the model to
recognize emotions with similar semantics in diverse contexts. To achieve these
objectives, we use the pre-trained encoder-decoder model BART as our backbone
model since it is very suitable for both understanding and generation tasks.
The experiments on four datasets demonstrate that our proposed model obtains
significantly more favorable results than the state-of-the-art model in
dialogue emotion recognition. The ablation study further demonstrates the
effectiveness of supervised contrastive loss and generative loss.
Related papers
- Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - E-CORE: Emotion Correlation Enhanced Empathetic Dialogue Generation [33.57399405783864]
We propose a novel emotion correlation enhanced empathetic dialogue generation framework.
Specifically, a multi-resolution emotion graph is devised to capture context-based emotion interactions.
We then propose an emotion correlation enhanced decoder, with a novel correlation-aware aggregation and soft/hard strategy.
arXiv Detail & Related papers (2023-11-25T12:47:39Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
We propose a Dynamic Causal Disentanglement Model based on hidden variable separation.
This model effectively decomposes the content of dialogues and investigates the temporal accumulation of emotions.
Specifically, we propose a dynamic temporal disentanglement model to infer the propagation of utterances and hidden variables.
arXiv Detail & Related papers (2023-09-13T12:58:09Z) - deep learning of segment-level feature representation for speech emotion
recognition in conversations [9.432208348863336]
We propose a conversational speech emotion recognition method to deal with capturing attentive contextual dependency and speaker-sensitive interactions.
First, we use a pretrained VGGish model to extract segment-based audio representation in individual utterances.
Second, an attentive bi-directional recurrent unit (GRU) models contextual-sensitive information and explores intra- and inter-speaker dependencies jointly.
arXiv Detail & Related papers (2023-02-05T16:15:46Z) - Perspective-taking and Pragmatics for Generating Empathetic Responses
Focused on Emotion Causes [50.569762345799354]
We argue that two issues must be tackled at the same time: (i) identifying which word is the cause for the other's emotion from his or her utterance and (ii) reflecting those specific words in the response generation.
Taking inspiration from social cognition, we leverage a generative estimator to infer emotion cause words from utterances with no word-level label.
arXiv Detail & Related papers (2021-09-18T04:22:49Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
We present a novel deep learning-based framework to generate embedding representations of fine-grained emotions.
Our framework integrates a contextualized embedding encoder with a multi-head probing model.
Our model is evaluated on the Empathetic Dialogue dataset and shows the state-of-the-art result for classifying 32 emotions.
arXiv Detail & Related papers (2021-04-20T16:55:15Z) - Infusing Multi-Source Knowledge with Heterogeneous Graph Neural Network
for Emotional Conversation Generation [25.808037796936766]
In a real-world conversation, we instinctively perceive emotions from multi-source information.
We propose a heterogeneous graph-based model for emotional conversation generation.
Experimental results show that our model can effectively perceive emotions from multi-source knowledge.
arXiv Detail & Related papers (2020-12-09T06:09:31Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.