論文の概要: PrimSeq: a deep learning-based pipeline to quantitate rehabilitation
training
- arxiv url: http://arxiv.org/abs/2112.11330v1
- Date: Tue, 21 Dec 2021 16:19:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-22 18:10:11.890792
- Title: PrimSeq: a deep learning-based pipeline to quantitate rehabilitation
training
- Title(参考訳): PrimSeq: リハビリテーショントレーニングを定量化するディープラーニングベースのパイプライン
- Authors: Avinash Parnandi, Aakash Kaku, Anita Venkatesan, Natasha Pandit, Audre
Wirtanen, Haresh Rajamohan, Kannan Venkataramanan, Dawn Nilsen, Carlos
Fernandez-Granda, Heidi Schambra
- Abstract要約: PrimSeqは、脳卒中リハビリテーションで訓練された機能的な動作を分類しカウントするためのパイプラインである。
われわれのアプローチは、上半身の動きを捉えるウェアラブルセンサーと、動きの順序を予測するディープラーニングモデルと、背の高い動きを予測するアルゴリズムを統合している。
- 参考スコア(独自算出の注目度): 9.902223920743872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stroke rehabilitation seeks to increase neuroplasticity through the repeated
practice of functional motions, but may have minimal impact on recovery because
of insufficient repetitions. The optimal training content and quantity are
currently unknown because no practical tools exist to measure them. Here, we
present PrimSeq, a pipeline to classify and count functional motions trained in
stroke rehabilitation. Our approach integrates wearable sensors to capture
upper-body motion, a deep learning model to predict motion sequences, and an
algorithm to tally motions. The trained model accurately decomposes
rehabilitation activities into component functional motions, outperforming
competitive machine learning methods. PrimSeq furthermore quantifies these
motions at a fraction of the time and labor costs of human experts. We
demonstrate the capabilities of PrimSeq in previously unseen stroke patients
with a range of upper extremity motor impairment. We expect that these advances
will support the rigorous measurement required for quantitative dosing trials
in stroke rehabilitation.
- Abstract(参考訳): 脳卒中リハビリテーションは、機能運動を繰り返し実践することで神経可塑性を増大させようとするが、繰り返しの不足のため回復にはほとんど影響を与えない可能性がある。
最適なトレーニング内容と量は現在不明であり、測定する実用的なツールが存在しない。
ここでは,脳卒中リハビリテーション訓練中の機能動作の分類とカウントを行うパイプラインであるprimseqを提案する。
このアプローチでは、上半身の動きをキャプチャするウェアラブルセンサー、動きのシーケンスを予測するディープラーニングモデル、動きを集計するアルゴリズムを統合している。
訓練されたモデルは、リハビリテーション活動を正確にコンポーネント機能動作に分解し、競争力のある機械学習手法を上回る。
PrimSeqはさらに、人間の専門家の時間と労働コストのごく一部でこれらの動きを定量化している。
上肢運動障害の既往歴のない脳卒中患者のPrimSeqの有用性について検討した。
脳卒中リハビリテーションにおける定量的検査に必要な厳密な測定を支援することが期待されている。
関連論文リスト
- Precision Rehabilitation for Patients Post-Stroke based on Electronic Health Records and Machine Learning [3.972100195623647]
ピッツバーグ大学メディカルセンターから265名の脳卒中患者のデータを収集した。
影響のあるエクササイズを特定するために、我々はChi-square test, Fisher's exact test, and logistic regression for odds ratioを用いた。
術後機能改善に寄与する3つのリハビリテーション運動について検討した。
論文 参考訳(メタデータ) (2024-05-09T04:06:44Z) - Decomposed Human Motion Prior for Video Pose Estimation via Adversarial
Training [7.861513525154702]
本稿では, ニューラルネットワークが先行知識から容易に学習できるように, 関節運動の前に全体運動を分解することを提案する。
また,新たな正規化損失を利用して,前もって導入された動きの正確さと滑らかさのバランスをとる。
提案手法は従来の3DPW法と比較して, PA-MPJPEが9%, 加速度誤差が29%低い。
論文 参考訳(メタデータ) (2023-05-30T04:53:34Z) - Rehabilitation Exercise Repetition Segmentation and Counting using
Skeletal Body Joints [6.918076156491651]
本稿では,患者が実施するリハビリテーション運動の繰り返しを分割・数えるための新しいアプローチを提案する。
骨格の関節は、深度カメラまたは患者のRGBビデオに適用されたコンピュータビジョン技術によって取得することができる。
様々なシーケンシャルニューラルネットワークは、骨格体関節の配列を分析し、繰り返しセグメンテーションとカウントを行うように設計されている。
論文 参考訳(メタデータ) (2023-04-19T15:22:15Z) - Automated Fidelity Assessment for Strategy Training in Inpatient
Rehabilitation using Natural Language Processing [53.096237570992294]
戦略トレーニング (Strategy Training) とは、脳卒中後の認知障害患者に障害を減らすためのスキルを教える、リハビリテーションのアプローチである。
標準化された忠実度評価は治療原則の遵守度を測定するために用いられる。
本研究では,ルールベースNLPアルゴリズム,長短項メモリ(LSTM)モデル,および変換器(BERT)モデルからの双方向エンコーダ表現を開発した。
論文 参考訳(メタデータ) (2022-09-14T15:33:30Z) - From Motion to Muscle [0.0]
筋活動は, 位置, 速度, 加速度などの運動特徴に基づいて人工的に生成できることを示す。
このモデルは、以前に訓練された運動に対して顕著な精度を達成し、これまで訓練されていない新しい運動に対して非常に高い精度を維持している。
論文 参考訳(メタデータ) (2022-01-27T13:30:17Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Persistent Reinforcement Learning via Subgoal Curricula [114.83989499740193]
VaPRL(Value-accelerated Persistent Reinforcement Learning)は、初期状態のカリキュラムを生成する。
VaPRLは、エピソード強化学習と比較して、3桁の精度で必要な介入を減らす。
論文 参考訳(メタデータ) (2021-07-27T16:39:45Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
本研究では,心臓の運動推定を高精度かつ効率的に行うための,ディープラーニングに基づく新しいアプローチであるMotion Pyramid Networksを提案する。
我々は、複数の特徴表現から運動場のピラミッドを予測し、融合し、より洗練された運動場を生成する。
そこで我々は,新しい循環型教員教育戦略を用いて,推論をエンドツーエンドにし,トラッキング性能をさらに向上させる。
論文 参考訳(メタデータ) (2020-06-28T21:03:19Z) - Towards data-driven stroke rehabilitation via wearable sensors and deep
learning [13.839058010830971]
脳卒中の前臨床モデルでは、動物の手足の機能的運動を回復するために、高用量のリハビリテーション訓練が必要である。
しかしながら、ヒトでは、回復を促進するために必要な訓練量は不明である。
そこで我々は,機能的プリミティブを自動的に識別する重要な第一歩を踏み出した。
論文 参考訳(メタデータ) (2020-04-14T18:05:44Z) - A Review of Computational Approaches for Evaluation of Rehabilitation
Exercises [58.720142291102135]
本稿では,モーションキャプチャシステムを用いたリハビリテーションプログラムにおける患者のパフォーマンスを評価するための計算手法についてレビューする。
エクササイズ評価のための再検討された計算手法は, 離散的な運動スコア, ルールベース, テンプレートベースアプローチの3つのカテゴリに分類される。
論文 参考訳(メタデータ) (2020-02-29T22:18:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。