StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation
- URL: http://arxiv.org/abs/2112.11427v1
- Date: Tue, 21 Dec 2021 18:45:45 GMT
- Title: StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation
- Authors: Roy Or-El and Xuan Luo and Mengyi Shan and Eli Shechtman and Jeong
Joon Park and Ira Kemelmacher-Shlizerman
- Abstract summary: We introduce a high resolution, 3D-consistent image and shape generation technique which we call StyleSDF.
Our method is trained on single-view RGB data only, and stands on the shoulders of StyleGAN2 for image generation.
- Score: 34.01352591390208
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce a high resolution, 3D-consistent image and shape generation
technique which we call StyleSDF. Our method is trained on single-view RGB data
only, and stands on the shoulders of StyleGAN2 for image generation, while
solving two main challenges in 3D-aware GANs: 1) high-resolution,
view-consistent generation of the RGB images, and 2) detailed 3D shape. We
achieve this by merging a SDF-based 3D representation with a style-based 2D
generator. Our 3D implicit network renders low-resolution feature maps, from
which the style-based network generates view-consistent, 1024x1024 images.
Notably, our SDF-based 3D modeling defines detailed 3D surfaces, leading to
consistent volume rendering. Our method shows higher quality results compared
to state of the art in terms of visual and geometric quality.
Related papers
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild.
Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture.
We propose bridging the gap between 2D and 3D diffusion models to address this limitation.
arXiv Detail & Related papers (2024-10-12T10:14:11Z) - Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models [112.2625368640425]
High-resolution Image-to-3D model (Hi3D) is a new video diffusion based paradigm that redefines a single image to multi-view images as 3D-aware sequential image generation.
Hi3D first empowers the pre-trained video diffusion model with 3D-aware prior, yielding multi-view images with low-resolution texture details.
arXiv Detail & Related papers (2024-09-11T17:58:57Z) - What You See is What You GAN: Rendering Every Pixel for High-Fidelity
Geometry in 3D GANs [82.3936309001633]
3D-aware Generative Adversarial Networks (GANs) have shown remarkable progress in learning to generate multi-view-consistent images and 3D geometries.
Yet, the significant memory and computational costs of dense sampling in volume rendering have forced 3D GANs to adopt patch-based training or employ low-resolution rendering with post-processing 2D super resolution.
We propose techniques to scale neural volume rendering to the much higher resolution of native 2D images, thereby resolving fine-grained 3D geometry with unprecedented detail.
arXiv Detail & Related papers (2024-01-04T18:50:38Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - Mimic3D: Thriving 3D-Aware GANs via 3D-to-2D Imitation [29.959223778769513]
We propose a novel learning strategy, namely 3D-to-2D imitation, which enables a 3D-aware GAN to generate high-quality images.
We also introduce 3D-aware convolutions into the generator for better 3D representation learning.
With the above strategies, our method reaches FID scores of 5.4 and 4.3 on FFHQ and AFHQ-v2 Cats, respectively, at 512x512 resolution.
arXiv Detail & Related papers (2023-03-16T02:18:41Z) - XDGAN: Multi-Modal 3D Shape Generation in 2D Space [60.46777591995821]
We propose a novel method to convert 3D shapes into compact 1-channel geometry images and leverage StyleGAN3 and image-to-image translation networks to generate 3D objects in 2D space.
The generated geometry images are quick to convert to 3D meshes, enabling real-time 3D object synthesis, visualization and interactive editing.
We show both quantitatively and qualitatively that our method is highly effective at various tasks such as 3D shape generation, single view reconstruction and shape manipulation, while being significantly faster and more flexible compared to recent 3D generative models.
arXiv Detail & Related papers (2022-10-06T15:54:01Z) - 3D-GIF: 3D-Controllable Object Generation via Implicit Factorized
Representations [31.095503715696722]
We propose the factorized representations which are view-independent and light-disentangled, and training schemes with randomly sampled light conditions.
We demonstrate the superiority of our method by visualizing factorized representations, re-lighted images, and albedo-textured meshes.
This is the first work that extracts albedo-textured meshes with unposed 2D images without any additional labels or assumptions.
arXiv Detail & Related papers (2022-03-12T15:23:17Z) - 3DStyleNet: Creating 3D Shapes with Geometric and Texture Style
Variations [81.45521258652734]
We propose a method to create plausible geometric and texture style variations of 3D objects.
Our method can create many novel stylized shapes, resulting in effortless 3D content creation and style-ware data augmentation.
arXiv Detail & Related papers (2021-08-30T02:28:31Z) - Lifting 2D StyleGAN for 3D-Aware Face Generation [52.8152883980813]
We propose a framework, called LiftedGAN, that disentangles and lifts a pre-trained StyleGAN2 for 3D-aware face generation.
Our model is "3D-aware" in the sense that it is able to (1) disentangle the latent space of StyleGAN2 into texture, shape, viewpoint, lighting and (2) generate 3D components for synthetic images.
arXiv Detail & Related papers (2020-11-26T05:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.