Quasiprobabilistic state-overlap estimator for NISQ devices
- URL: http://arxiv.org/abs/2112.11618v1
- Date: Wed, 22 Dec 2021 01:51:31 GMT
- Title: Quasiprobabilistic state-overlap estimator for NISQ devices
- Authors: Leonardo Guerini, Roeland Wiersema, Juan Felipe Carrasquilla, and
Leandro Aolita
- Abstract summary: A key concept, the state overlap between two quantum states, offers a natural tool to verify and cross-validate quantum simulators and quantum computers.
Here, we demonstrate a practical approach for measuring the overlap between quantum states based on a factorable quasiprobabilistic representation of the states.
- Score: 0.39583175274885335
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As quantum technologies mature, the development of tools for benchmarking
their ability to prepare and manipulate complex quantum states becomes
increasingly necessary. A key concept, the state overlap between two quantum
states, offers a natural tool to verify and cross-validate quantum simulators
and quantum computers. Recent progress in controlling and measuring large
quantum systems has motivated the development of state overlap estimators of
varying efficiency and experimental complexity. Here, we demonstrate a
practical approach for measuring the overlap between quantum states based on a
factorable quasiprobabilistic representation of the states, and compare it with
methods based on randomised measurements. Assuming realistic noisy intermediate
scale quantum (NISQ) devices limitations, our quasiprobabilistic method
outperforms the best circuits designed for state-overlap estimation for n-qubit
states, with n > 2. For n < 7, our technique outperforms also the currently
best direct estimator based on randomised local measurements, thus establishing
a niche of optimality.
Related papers
- Arbitrary quantum states preparation aided by deep reinforcement learning [0.89059457062394]
We integrate the initial and the target state information within the state preparation task together, so as to realize the control trajectory design between two arbitrary quantum states.
Our results demonstrate that the resulting control trajectories can effectively achieve arbitrary quantum state preparation for both single-qubit and two-qubit systems.
arXiv Detail & Related papers (2024-07-23T10:28:52Z) - Mixed-Dimensional Qudit State Preparation Using Edge-Weighted Decision Diagrams [3.393749500700096]
Quantum computers have the potential to solve intractable problems.
One key element to exploiting this potential is the capability to efficiently prepare quantum states for multi-valued, or qudit, systems.
In this paper, we investigate quantum state preparation with a focus on mixed-dimensional systems.
arXiv Detail & Related papers (2024-06-05T18:00:01Z) - Entanglement cost of realizing quantum processes [5.086696108576776]
We develop an efficiently computable tool that reliably estimates the amount of entanglement needed for realizing arbitrary quantum processes.
Our tool applies to the entanglement required to prepare a broad range of quantum states in the regime, surpassing previous methods' limitations.
arXiv Detail & Related papers (2023-11-17T17:07:26Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Reconstructing complex states of a 20-qubit quantum simulator [0.6646556786265893]
We demonstrate an efficient method for reconstruction of significantly entangled multi-qubit quantum states.
We observe superior state reconstruction quality and faster convergence compared to the methods based on neural network quantum state representations.
Our results pave the way towards efficient experimental characterization of complex states produced by the quench dynamics of many-body quantum systems.
arXiv Detail & Related papers (2022-08-09T15:52:20Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Convergence of reconstructed density matrix to a pure state using
maximal entropy approach [4.084744267747294]
We propose an alternative approach to QST for the complete reconstruction of the density matrix of a quantum system in a pure state for any number of qubits.
Our goal is to provide a practical inference of a quantum system in a pure state that can find its applications in the field of quantum error mitigation on a real quantum computer.
arXiv Detail & Related papers (2021-07-02T16:58:26Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.