Arbitrary quantum states preparation aided by deep reinforcement learning
- URL: http://arxiv.org/abs/2407.16368v1
- Date: Tue, 23 Jul 2024 10:28:52 GMT
- Title: Arbitrary quantum states preparation aided by deep reinforcement learning
- Authors: Zhao-Wei Wang, Zhao-Ming Wang,
- Abstract summary: We integrate the initial and the target state information within the state preparation task together, so as to realize the control trajectory design between two arbitrary quantum states.
Our results demonstrate that the resulting control trajectories can effectively achieve arbitrary quantum state preparation for both single-qubit and two-qubit systems.
- Score: 0.89059457062394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The preparation of quantum states is essential in the realm of quantum information processing, and the development of efficient methodologies can significantly alleviate the strain on quantum resources. Within the framework of deep reinforcement learning (DRL), we integrate the initial and the target state information within the state preparation task together, so as to realize the control trajectory design between two arbitrary quantum states. Utilizing a semiconductor double quantum dots (DQDs) model, our results demonstrate that the resulting control trajectories can effectively achieve arbitrary quantum state preparation (AQSP) for both single-qubit and two-qubit systems, with average fidelities of 0.9868 and 0.9556 for the test sets, respectively. Furthermore, we consider the noise around the system and the control trajectories exhibit commendable robustness against charge and nuclear noise. Our study not only substantiates the efficacy of DRL in QSP, but also provides a new solution for quantum control tasks of multi-initial and multi-objective states, and is expected to be extended to a wider range of quantum control problems.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Dual-GSE: Resource-efficient Generalized Quantum Subspace Expansion [2.3847436897240453]
A generalized quantum subspace expansion (GSE) has been proposed that is significantly robust against coherent errors.
We propose a resource-efficient implementation of GSE, which we name "Dual-GSE"
Remarkably, Dual-GSE can further simulate larger quantum systems beyond the size of available quantum hardware.
arXiv Detail & Related papers (2023-09-25T14:28:40Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Self-Correcting Quantum Many-Body Control using Reinforcement Learning
with Tensor Networks [0.0]
We present a novel framework for efficiently controlling quantum many-body systems based on reinforcement learning (RL)
We show that RL agents are capable of finding universal controls, of learning how to optimally steer previously unseen many-body states, and of adapting control protocols on-thefly when the quantum dynamics is subject to perturbations.
arXiv Detail & Related papers (2022-01-27T20:14:09Z) - High-fidelity tracking of the evolution of multilevel quantum states [0.0]
The developed algorithms for quantum control are based on the use of the spinor representation of the Lorentz transformation group.
We show that feedback through weakly perturbing adaptive quantum measurements turns out to be capable of providing high-precision control of the quantum system.
arXiv Detail & Related papers (2022-01-09T19:23:09Z) - Quasiprobabilistic state-overlap estimator for NISQ devices [0.39583175274885335]
A key concept, the state overlap between two quantum states, offers a natural tool to verify and cross-validate quantum simulators and quantum computers.
Here, we demonstrate a practical approach for measuring the overlap between quantum states based on a factorable quasiprobabilistic representation of the states.
arXiv Detail & Related papers (2021-12-22T01:51:31Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Experimentally Realizing Efficient Quantum Control with Reinforcement
Learning [2.733342606024131]
We experimentally demonstrate an alternative approach to quantum control based on deep reinforcement learning (DRL) on a trapped $171mathrmYb+$ ion.
In particular, we find that DRL leads to fast and robust digital quantum operations with running time bounded by shortcuts to adiabaticity (STA)
Our experiments reveal a general framework of digital quantum control, leading to a promising enhancement in quantum information processing.
arXiv Detail & Related papers (2021-01-22T09:34:58Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.