論文の概要: Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks?
- arxiv url: http://arxiv.org/abs/2112.12133v1
- Date: Wed, 22 Dec 2021 18:47:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-23 16:22:35.796046
- Title: Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks?
- Title(参考訳): 深部ニューラルネットワークは超低遅延スパイクニューラルネットワークに変換できるか?
- Authors: Gourav Datta and Peter A. Beerel
- Abstract要約: スパイクニューラルネットワーク(SNN)は、時間とともに分散されたバイナリスパイクを介して動作する。
SNNのためのSOTAトレーニング戦略は、非スパイキングディープニューラルネットワーク(DNN)からの変換を伴う
そこで本研究では,DNNと変換SNNの誤差を最小限に抑えながら,これらの分布を正確にキャプチャする新たなトレーニングアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 3.2108350580418166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking neural networks (SNNs), that operate via binary spikes distributed
over time, have emerged as a promising energy efficient ML paradigm for
resource-constrained devices. However, the current state-of-the-art (SOTA) SNNs
require multiple time steps for acceptable inference accuracy, increasing
spiking activity and, consequently, energy consumption. SOTA training
strategies for SNNs involve conversion from a non-spiking deep neural network
(DNN). In this paper, we determine that SOTA conversion strategies cannot yield
ultra low latency because they incorrectly assume that the DNN and SNN
pre-activation values are uniformly distributed. We propose a new training
algorithm that accurately captures these distributions, minimizing the error
between the DNN and converted SNN. The resulting SNNs have ultra low latency
and high activation sparsity, yielding significant improvements in compute
efficiency. In particular, we evaluate our framework on image recognition tasks
from CIFAR-10 and CIFAR-100 datasets on several VGG and ResNet architectures.
We obtain top-1 accuracy of 64.19% with only 2 time steps on the CIFAR-100
dataset with ~159.2x lower compute energy compared to an iso-architecture
standard DNN. Compared to other SOTA SNN models, our models perform inference
2.5-8x faster (i.e., with fewer time steps).
- Abstract(参考訳): 時間をかけて分散するバイナリスパイクを介して動作するスパイキングニューラルネットワーク(SNN)は、リソース制約デバイスのための有望なエネルギー効率の高いMLパラダイムとして登場した。
しかし、現在のSOTA(State-of-the-art)SNNは、推測精度を許容し、スパイク活性を増大させ、結果としてエネルギー消費を増大させるために複数の時間ステップを必要とする。
SNNのSOTAトレーニング戦略には、非スパイキングディープニューラルネットワーク(DNN)からの変換が含まれる。
本稿では,DNN と SNN の事前活性化値が均一に分散されていることを誤って仮定するため,SOTA 変換戦略が極低レイテンシを実現することはできないと判断する。
そこで本研究では,DNNと変換SNNの誤差を最小限に抑えながら,これらの分布を正確にキャプチャする新たなトレーニングアルゴリズムを提案する。
その結果、SNNは超低レイテンシと高いアクティベーション間隔を持ち、計算効率が大幅に向上した。
特に,複数のVGGおよびResNetアーキテクチャ上でCIFAR-10およびCIFAR-100データセットから画像認識タスクのフレームワークを評価する。
CIFAR-100データセット上の2ステップで64.19%のTop-1精度が得られるが、計算エネルギーはIso-architecture標準のDNNに比べて159.2倍低い。
他のSOTA SNNモデルと比較して、我々のモデルは2.5-8倍高速な推論を行う。
関連論文リスト
- NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
我々は、NAS-BNNと呼ばれる二元ニューラルネットワークのための新しいニューラルネットワーク探索手法を提案する。
我々の発見したバイナリモデルファミリーは、20Mから2Mまでの幅広い操作(OP)において、以前のBNNよりも優れていた。
さらに,対象検出タスクにおける探索されたBNNの転送可能性を検証するとともに,探索されたBNNを用いたバイナリ検出器は,MSデータセット上で31.6% mAP,370万 OPsなどの新たな最先端結果を得る。
論文 参考訳(メタデータ) (2024-08-28T02:17:58Z) - Low Latency Conversion of Artificial Neural Network Models to
Rate-encoded Spiking Neural Networks [11.300257721586432]
スパイキングニューラルネットワーク(SNN)は、リソース制約のあるアプリケーションに適している。
典型的なレートエンコードされたSNNでは、グローバルに固定された時間ウィンドウ内の一連のバイナリスパイクを使用してニューロンを発射する。
本研究の目的は、ANNを等価SNNに変換する際の精度を維持しつつ、これを削減することである。
論文 参考訳(メタデータ) (2022-10-27T08:13:20Z) - Ultra-low Latency Adaptive Local Binary Spiking Neural Network with
Accuracy Loss Estimator [4.554628904670269]
精度損失推定器を用いた超低レイテンシ適応型局所二元スパイクニューラルネットワーク(ALBSNN)を提案する。
実験の結果,ネットワークの精度を損なうことなく,ストレージ容量を20%以上削減できることがわかった。
論文 参考訳(メタデータ) (2022-07-31T09:03:57Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Optimized Potential Initialization for Low-latency Spiking Neural
Networks [21.688402090967497]
スパイキングニューラルネットワーク (SNN) は低消費電力, 生物学的可視性, 敵の強靭性といった特徴により, 非常に重要視されている。
ディープSNNをトレーニングする最も効果的な方法は、ディープネットワーク構造と大規模データセットで最高のパフォーマンスを実現したANN-to-SNN変換である。
本稿では、非常に低レイテンシ(32段階未満)で高性能に変換されたSNNを実現することを目的とする。
論文 参考訳(メタデータ) (2022-02-03T07:15:43Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
spiking neural networks (snns) は生物学に触発されたニューラルネットワーク (anns) である。
しきい値バランスとソフトリセット機構を組み合わせることで、重みをターゲットSNNに転送する新しい戦略パイプラインを提案する。
提案手法は,SNNのエネルギーとメモリの制限によるサポートを向上し,組込みプラットフォームに組み込むことが期待できる。
論文 参考訳(メタデータ) (2021-02-28T12:04:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z) - Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike
Timing Dependent Backpropagation [10.972663738092063]
Spiking Neural Networks(SNN)は非同期離散イベント(スパイク)で動作する
本稿では,深層SNNのための計算効率のよいトレーニング手法を提案する。
我々は、SNN上のImageNetデータセットの65.19%のトップ1精度を250タイムステップで達成し、同様の精度で変換されたSNNに比べて10倍高速である。
論文 参考訳(メタデータ) (2020-05-04T19:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。