Entropic uncertainty relations from equiangular tight frames and their
applications
- URL: http://arxiv.org/abs/2112.12375v4
- Date: Fri, 18 Aug 2023 08:38:34 GMT
- Title: Entropic uncertainty relations from equiangular tight frames and their
applications
- Authors: Alexey E. Rastegin
- Abstract summary: We derive uncertainty relations for a quantum measurement assigned to an equiangular tight frame.
Also, we discuss applications of considered measurements to detect entanglement and other correlations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finite tight frames are interesting in various topics including questions of
quantum information. Each complex tight frame leads to a resolution of the
identity in the Hilbert space. Symmetric informationally complete measurements
are a special class of equiangular tight frames. Applications of such frames in
quantum physics deserve more attention than they have obtained. We derive
uncertainty relations for a quantum measurement assigned to an equiangular
tight frame. Main results follow from estimation of the corresponding index of
coincidence. State-dependent and state-independent formulations are both
addressed. Also, we discuss applications of considered measurements to detect
entanglement and other correlations.
Related papers
- Tightening the entropic uncertainty relations with quantum memory in a multipartite scenario [8.627546022781074]
We introduce a tripartite quantum-memory-assisted entropic uncertainty relation.
We extend the relation to encompass multiple measurements conducted within multipartite systems.
arXiv Detail & Related papers (2025-01-06T09:09:34Z) - Correlated Noise Estimation with Quantum Sensor Networks [18.51122677780099]
We develop a theoretical framework to determine the limits of correlated (weak) noise estimation with quantum sensor networks.
We identify a sensing protocol, reminiscent of a many-body echo sequence, that achieves the fundamental limits of measurement sensitivity for a broad class of problems.
arXiv Detail & Related papers (2024-12-23T19:00:06Z) - Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Classification of joint quantum measurements based on entanglement cost of localization [42.72938925647165]
We propose a systematic classification of joint measurements based on entanglement cost.
We show how to numerically explore higher levels and construct generalizations to higher dimensions and multipartite settings.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - One-Shot Min-Entropy Calculation And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.
It gives an alternative tight finite-data analysis for the well-known BB84 quantum key distribution protocol.
It provides a security proof for a novel source-independent continuous-variable quantum random number generation protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Analysing quantum systems with randomised measurements [0.4179230671838898]
We present the advancements made in utilising randomised measurements in various scenarios of quantum information science.
We describe how to detect and characterise different forms of entanglement, including genuine multipartite entanglement and bound entanglement.
We also present an overview on the estimation of non-linear functions of quantum states and shadow tomography from randomised measurements.
arXiv Detail & Related papers (2023-07-03T18:00:01Z) - On Kirkwood--Dirac quasiprobabilities and unravelings of quantum channel assigned to a tight frame [0.0]
Using vectors of the given tight frame to build principal Kraus operators generates quasiprobabilities with interesting properties.
New inequalities for characterizing the location of eigenvalues are derived.
A utility of the presented inequalities is exemplified with symmetric informationally complete measurement in dimension two.
arXiv Detail & Related papers (2023-04-27T09:11:11Z) - General framework of quantum complementarity from a measurement-based
perspective [6.073419957391949]
We develop a framework for demonstrating quantum complementarity in the form of information exclusion relations.
We explore the applications of our theory in entanglement witnessing and elucidate that our IERs lead to an extended form of entropic uncertainty relations.
arXiv Detail & Related papers (2022-10-03T14:20:52Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - R\'{e}nyi formulation of uncertainty relations for POVMs assigned to a
quantum design [0.0]
Information entropies provide powerful and flexible way to express restrictions imposed by the uncertainty principle.
In this paper, we obtain uncertainty relations in terms of min-entropies and R'enyi entropies for POVMs assigned to a quantum design.
arXiv Detail & Related papers (2020-04-12T09:44:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.