Higher-Form Subsystem Symmetry Breaking: Subdimensional Criticality and
Fracton Phase Transitions
- URL: http://arxiv.org/abs/2112.12735v2
- Date: Thu, 25 May 2023 04:13:40 GMT
- Title: Higher-Form Subsystem Symmetry Breaking: Subdimensional Criticality and
Fracton Phase Transitions
- Authors: Brandon C. Rayhaun and Dominic J. Williamson
- Abstract summary: Subsystem symmetry has emerged as a powerful organizing principle for unconventional quantum phases of matter.
We show that certain transitions out of familiar fracton phases, including the X-cube model, can be understood in terms of the spontaneous breaking of subsystem symmetries.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Subsystem symmetry has emerged as a powerful organizing principle for
unconventional quantum phases of matter, most prominently fracton topological
orders. Here, we focus on a special subclass of such symmetries, known as
higher-form subsystem symmetries, which allow us to adapt tools from the study
of conventional topological phases to the fracton setting. We demonstrate that
certain transitions out of familiar fracton phases, including the X-cube model,
can be understood in terms of the spontaneous breaking of higher-form subsystem
symmetries. We find simple pictures for these seemingly complicated fracton
topological phase transitions by relating them in an exact manner, via gauging,
to spontaneous higher-form subsystem symmetry breaking phase transitions of
decoupled stacks of lower-dimensional models. We harness this perspective to
construct a sequence of unconventional subdimensional critical points in two
and three spatial dimensions based on the stacking and gauging of canonical
models with higher-form symmetry. Through numerous examples, we illustrate the
ubiquity of coupled layer constructions in theories with higher-form subsystem
symmetries.
Related papers
- Quantum Phase Transitions between Symmetry-Enriched Fracton Phases [5.131854158904627]
We study an analogous situation for three-dimensional fracton phases by means of tensor network states (isoTNS) with finite bond dimension.
We find a family of exact wavefunctions for which the symmetry fractionalization under an anti-unitary symmetry on both types of excitations is directly visible.
Based on the isoTNS description of the wavefunction, we determine a linear-depth quantum circuit to sequentially realize these states on a quantum processor.
arXiv Detail & Related papers (2025-01-30T19:00:02Z) - Exceptional Points and Stability in Nonlinear Models of Population Dynamics having $\mathcal{PT}$ symmetry [49.1574468325115]
We analyze models governed by the replicator equation of evolutionary game theory and related Lotka-Volterra systems of population dynamics.
We study the emergence of exceptional points in two cases: (a) when the governing symmetry properties are tied to global properties of the models, and (b) when these symmetries emerge locally around stationary states.
arXiv Detail & Related papers (2024-11-19T02:15:59Z) - Subsystem Symmetry Fractionalization and Foliated Field Theory [0.0]
Topological quantum matter exhibits a range of exotic phenomena when enriched by subdimensional symmetries.
A recently discovered example is a type of subsystem symmetry fractionalization that occurs through a different mechanism to global symmetry fractionalization.
arXiv Detail & Related papers (2024-03-14T04:44:11Z) - Geometric Phase of a Transmon in a Dissipative Quantum Circuit [44.99833362998488]
We study the geometric phases acquired by a paradigmatic setup: a transmon coupled to a superconductor resonating cavity.
In the dissipative model, the non-unitary effects arise from dephasing, relaxation, and decay of the transmon coupled to its environment.
Our approach enables a comparison of the geometric phases obtained in these models, leading to a thorough understanding of the corrections introduced by the presence of the environment.
arXiv Detail & Related papers (2024-01-22T16:41:00Z) - Identifying the Group-Theoretic Structure of Machine-Learned Symmetries [41.56233403862961]
We propose methods for examining and identifying the group-theoretic structure of such machine-learned symmetries.
As an application to particle physics, we demonstrate the identification of the residual symmetries after the spontaneous breaking of non-Abelian gauge symmetries.
arXiv Detail & Related papers (2023-09-14T17:03:50Z) - Fractonic Higher-Order Topological Phases in Open Quantum Systems [12.454257885851737]
We study the generalization of decohered average symmetry-protected topological phases to open quantum systems with a combination of subsystem symmetries and global symmetries.
arXiv Detail & Related papers (2023-07-11T17:58:35Z) - On discrete symmetries of robotics systems: A group-theoretic and
data-driven analysis [38.92081817503126]
We study discrete morphological symmetries of dynamical systems.
These symmetries arise from the presence of one or more planes/axis of symmetry in the system's morphology.
We exploit these symmetries using data augmentation and $G$-equivariant neural networks.
arXiv Detail & Related papers (2023-02-21T04:10:16Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Fracton phases via exotic higher-form symmetry-breaking [0.0]
We study p-string condensation mechanisms for fracton phases from the viewpoint of higher-form symmetry.
We focus on the examples of the X-cube model and the rank-two symmetric-tensor U(1) scalar charge theory.
arXiv Detail & Related papers (2020-10-05T18:08:10Z) - Subsystem symmetry enriched topological order in three dimensions [0.0]
We introduce a model of three-dimensional (3D) topological order enriched by planar subsystem symmetries.
We study the non-trivial action of the symmetries on boundary of this model, uncovering a mixed boundary anomaly between global and subsystem symmetries.
arXiv Detail & Related papers (2020-04-08T18:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.